Ramsey Taxation

Sharif University of Technology

January 2020

Ricardian Equivalence Theorem

Holding current and future government spending constant, a change in current taxes with an equal and opposite change in the present value of future taxes leaves the equilibrium interest rate and the consumptions of individuals unchanged

- This theorem suggests that under certain conditions the timing of taxes does not matter
- What matters is the present value of tax liabilities
- Key: consumers realize that a tax break today is not free:taxes tomorrow will be higher, so they save the tax break

Optimal taxation of capital and labor-Household

The household problem: Let preferences be given by:

$$\sum_{t=0}^{\infty} \beta^t U(c_t, n_t)$$

The budget constraint of the household is:

$$\sum_{t=0}^{\infty} p_t[c_t + k_{t+1}] = \sum_{t=0}^{\infty} p_t[(1 - \tau_{lt}) w_t n_t + k_t R_{k,t}]$$

The gross after tax return on capital has the form

$$R_{kt} = 1 + (1 - \tau_{kt})(\upsilon_t - \delta)$$
 for all $t \ge 0$

Optimal taxation of capital and labor-Firm

The firm's problem is:

$$\max_{k_t,n_t} A_t F(k_t,n_t) - k_t v_t - w_t n_t$$

Feasibility is given by:

$$g_t + c_t + k_{t+1} = A_t F(k_t, n_t) + (1 - \delta)k_t$$

The government budget constraint is given by:

$$\sum_{t=0}^{\infty} p_t g_t = \sum_{t=0}^{\infty} p_t [\tau_{lt} w_t n_t + \tau_{kt} k_t (\upsilon_t - \delta)]$$

Optimal taxation of capital and labor

Definition: A competitive equilibrium with taxes where the government finances the purchases g_t is an allocation c_t , n_t , k_{t+1} a price system p_t , w_t , R_{kt} , and taxes τ_{lt} , τ_{kt} such that:

- ② c_t, n_t, k_{t+1} maximizes the household utility given prices, p_t, w_t, R_{kt} , taxes τ_{It}, τ_{kt} , and initial condition initial condition k_0 ,
- $oldsymbol{0}$ firms maximize profits given prices $extit{w}_t, extit{v}_t$,
- the government budget constraint holds.

Optimal taxation of capital and labor-FOC

FOC

The first order conditions for the household problem, using λ_h for the multiplier on the household budget constraint is:

$$c_t: \beta^t U_{ct} = \lambda_h p_t$$

$$n_t: \beta^t U_{nt} = \lambda_h p_t w_t (1 - \tau_{lt})$$

$$k_{t+1}: [-p_t + p_{t+1}R_{kt+1}]\lambda_h = 0$$

Optimal taxation of capital and labor

for all $t \geq 0$. These equations imply

$$\frac{-U_{nt}}{U_{ct}} = w_t (1 - \tau_{lt})$$

$$\frac{\beta U_{ct+1}}{U_{ct}} = \frac{p_{t+1}}{p_t} = \frac{1}{1 + r_{t+1}}$$
$$1 + r_{t+1} = R_{kt+1}$$

The firms order conditions for the firm problem are:

$$n_t: A_t F_n(k_t, n_t) - w_t = 0$$

$$k_t: A_t F_k(k_t, n_t) - \upsilon_t = 0$$

Implementability

We now summarize what type of allocation constitute an equilibrium with taxes that finances the exogenous stream of government purchases.

$$\sum_{t=0}^{\infty} \beta^{t} [U_{ct}c_{t} + U_{nt}n_{t}] = U_{C0}K_{0}R_{k_{0}}$$

• rewrite the budget constraint of households, by grouping the terms on k_{t+1} as:

$$\sum_{t=0}^{\infty} p_t \left(c_t - (1 - \tau_{lt}) w_t n_t \right) = \sum_{t=0}^{\infty} p_t k_t R_{kt} - \sum_{t=0}^{\infty} p_t k_{t+1}$$

 $oldsymbol{0}$ use the FOC in the household problem with respect to k_{t+1}

$$\sum_{t=0}^{\infty} p_t \left(c_t - (1 - \tau_{It}) w_t n_t \right) = p_0 k_0 R_{k0} + \sum_{t=0}^{\infty} p_{t+1} k_{t+1} \left[R_{k,t+1} - \frac{p_t}{p_t + 1} \right]$$

Implementability

① use the FOC for the household with respect to c_t and replace p_t by $\frac{\beta^t U_{ct}}{\lambda_b}$

$$\sum_{t=0}^{\infty} \beta^{t} [U_{ct}c_{t} - (1-\tau_{lt})w_{t}n_{t}] = \rho_{0}\lambda_{h}k_{0}R_{k0}$$

② use the FOC for the household with respect to n_t and replace $p_t w_t (1- au_{lt})$ by $\frac{-eta_t U_{nt}}{\lambda_h}$

$$\sum_{t=0}^{\infty} \beta^t [U_{ct}c_t + U_{nt}n_t] = p_0 \lambda_h k_0 R_{k0}$$

$$\sum_{t=0}^{\infty} \beta^{t} [U_{ct}c_{t} + U_{nt}n_{t}] = U_{C0}k_{0}R_{k0}$$

Ramsey Problem

- The Ramsey problem is to find the policy τ_{lt} , τ_{kt} that produce a competitive equilibrium with taxes with the highest utility for the agents.
- In other words, the Ramsey problem is to find the "optimal" taxes
 to finance a given stream of government purchases, subject to the
 fact that agents behave competitively for that taxes.
- Given our characterization of an equilibrium with taxes, the Ramsey problem can be solved by finding the allocation that maximizes the utility of the agents subject to feasibility for all $t \geq 0$ and subject to the implementability constraint.

Let λ be the Lagrange multiplier of the implementability constraint, then the problem is:

$$\max_{c_t, n_t, k_{t+1}, \tau_{k0}} \sum_{t=0}^{\infty} \beta^t (U(c_t, n_t) + \lambda [c_t U_c(c_t, n_t) + n_t U_n(c_t, n_t)] \\ -\lambda U_c(c_0, n_0) k_0 (1 + (1 - \tau_{k0})(F_{k0} - \delta))$$

subject to $au_{k0} \leq au_k^m$ and

$$g_t + c_t + k_{t+1} = A_t F(k_t, n_t) + (1 - \delta)k_t$$

for all $t \ge 0$ given k_0 .

This problem can be written as:

$$\max_{c_t, n_t, k_{t+1}, \tau_{k0}} \sum_{t=0}^{\infty} \beta^t W(c_t, n_t; \lambda)$$

$$-\lambda U_c(c_0, n_0) K_0 (1 + (1 - \tau_{k0})(F_{k0} - \delta))$$

subject to

$$g_t + c_t + k_{t+1} = A_t F(k_t, n_t) + (1 - \delta)k_t$$

for all $t \ge 0$ given k_0 where

$$W(c, n; \lambda) = U(c, n) + \lambda [cU_c(c, n) + nU_n(c, n)]$$

Writing in this form, the problem is similar to the plannerâ€■s problem for the neoclassical growth model, except that:

- **1** the period utility function U(c, n) has been replaced by $w(c, n; \lambda)$
- ② the first term in the discounted utility is different from the other terms. The function W has the interpretation of the social value of c,n, since U(c,n) is the private value and $\lambda[cU_c(c,n)+nU_n(c,n)]$ are the taxes corresponding to period t allocation, in terms of period t utils.

The FOC for this problem are:

$$1 = \frac{\beta W_{c,t+1}}{W_{c,t}} [F_{k,t+1} + (1 - \delta)]$$

and

$$-\frac{W_{nt}}{W_{ct}} = F_{nt}$$

Proposition (Chamley-Judd): No taxation of capital in steady state. Assume that $g_t \to \overline{g}$ and $A_t \to \overline{A}$ as $t \to \infty$. In a steady state of the Ramsey problem corresponding to $\overline{g}, \overline{A}$, there is no taxation of capital, i.e. $\overline{\tau}_k = 0$

Proof. The foc for the Ramsey problem in a steady state implies:

$$1 = \beta [F_{kt} + (1 - \delta)]$$

since

$$W_{c,t} = W_{c,t+1}$$

The marginal rate of substitution for agent is

$$1 = \beta [F_{k,t+1} + (1 - \delta)]$$

since

$$U_{ct} = U_{C,t+1}$$

and hence $\overline{\tau_k} = 0$ QED.

The marginal rate of substitution between consumption in t and t+T and the marginal rate is given by

$$MRS_{t,t+T} \equiv \frac{\beta^{t+T} U_{ct+T}}{\beta^t U_{ct}}$$

The marginal rate of transformation between consumption at t and t+T , given by:

$$MRT_{t,t+T} \equiv [(1 - \delta + F_{kt+1})(1 - \delta + F_{kt+2})...(1 - \delta + F_{kt+T})]^{-1}$$

$$\frac{MRS_{t,t+T}}{MRT_{t,t+T}} = \left[\frac{\beta^T U_{ct+T}}{U_{ct}}\right] \left[(1 - \delta + F_{k,t+1})(1 - \delta + F_{k,t+2}) \dots (1 - \delta + F_{k,t+T}) \right]$$

$$= \left[\frac{\beta^T U_{ct+T}}{U_{ct}}\right] \left[(1 + (1 - \tau_{k,t+1})(F_{k,t+1} - \delta)) \dots (1 + (1 - \tau_{k,t+T})(F_{k,t+T} - \delta)) \dots (1 + (1 - \tau_{k,t+T})(F_{k,t+T})(F_{k,t+T} - \delta)) \dots (1 + (1 - \tau_{k,t+T})(F_{k,t+T} - \delta)) \dots (1 + (1 - \tau_{k,t+T})(F_{k,t+T} - \delta)) \dots (1 + (1 - \tau_{k,t+T})(F_{k,t+T})(F_{k,t+T} - \delta)) \dots (1 + (1 - \tau_{k,t+T})(F_{k,t+T} - \delta)) \dots$$

$$= \left[\frac{\beta^{T} U_{ct+T}}{U_{ct}}\right] \left[(1 + (1 - \tau_{k,t+1})(F_{k,t+1} - \delta)) \dots (1 + (1 - \tau_{k,t+T})(F_{k,t+T} - \delta) \right] \\ \times \frac{1 - \delta + F_{k,t+1}}{1 + (1 - \tau_{k,t+1})(F_{k,t+1} - \delta)} \dots \frac{1 - \delta + F_{k,t+T}}{1 + (1 - \tau_{k,t+T})(F_{k,t+T} - \delta)}$$

which in equilibrium gives

$$\frac{\textit{MRS}_{t,t+T}}{\textit{MRT}_{t,t+T}} = \frac{1 - \delta + \textit{F}_{k,t+1}}{1 + (1 - \tau_{k,t+1})(\textit{F}_{k,t+1} - \delta)} \cdots \frac{1 - \delta + \textit{F}_{k,t+T}}{1 + (1 - \tau_{k,t+T})(\textit{F}_{kt+T} - \delta)}$$

At steady state

$$F_{kt} = \overline{\upsilon}$$

$$\rho = (1 - \overline{\tau}_K)(\overline{\upsilon} - \delta)$$

$$\begin{split} \frac{\textit{MRS}_{t,t+T}}{\textit{MRT}_{t,t+T}} &= (\frac{(1+\overline{\upsilon}-\delta)}{1+(1-\overline{\tau}_{\textit{K}})(\overline{\upsilon}-\delta)})^{\textit{T}} \\ &\qquad \qquad (\frac{(1+\frac{\rho}{1-\overline{\tau}_{\textit{K}}})^{\textit{T}}}{1+\rho})^{\textit{T}} \\ &= (1+\frac{\rho\overline{\tau}_{\textit{K}}}{(1+\rho)(1-\overline{\tau}_{\textit{K}})})^{\textit{T}} \end{split}$$

a constant positive tax rate on capital implies that the tax wedge between marginal rate of substitution between consumption between t and t+T and marginal rate of transformation of consumption between t and t+T grows exponentially with T. Thus, setting capital taxes to zero avoid this growing wedge.

Proposition 2. If preferences are of the form

$$U(c,n) = \frac{c^{1-\sigma}n^{\varphi}}{1-\sigma}$$

Then the solution of the Ramsey problem has zero tax rates starting at $t \ge 2$. Proof. Direct computation gives:

$$W_{ct} = U_{ct} + \lambda (U_{ct} + c_t U_{cct} + n_t U_{nct})$$
 $U_c = c^{-\sigma} n^{\varphi}$
 $cU_{cc} = -\sigma c^{-\sigma} n^{\varphi}$
 $nU_{cn} = \varphi c^{-\sigma} n^{\varphi}$

Thus the foc of the Ramsey problem gives

$$1 = \frac{\beta W_{c,t+1}}{W_{ct,}} [1 - \delta + F_{k,t+1}] = \frac{\beta U_{c,t+1}}{U_{c,t}} [1 - \delta + F_{k,t+1}]$$

for $t \ge 1$, which implies that $\tau_{k,t} = 0$ for $t \ge 2$.

Tax on Labor

Proposition 3. Let preferences be as follows

$$U(c,n) = \frac{c^{1-\sigma}n^{\varphi}}{1-\sigma} or$$

$$U(c,n) = \frac{c^{1-\sigma}}{1-\sigma} - A \frac{n^{\varphi}}{1-\varphi}$$

for $\sigma \geq 0$. Then the tax rate on labor τ_{lt} is constant from $t \geq 1$.

Proof. Consider first the case where the utility function is given as in the first line. Direct computation gives

$$U_{n} = \varphi \frac{c^{-\sigma}}{1 - \sigma} n^{\varphi - 1}$$

$$nU_{nn} = (\varphi - 1)\varphi \frac{c^{-\sigma}}{1 - \sigma} n^{\varphi - 1}$$

$$cU_{cn} = -\sigma \varphi \frac{c^{-\sigma}}{1 - \sigma} n^{\varphi - 1}$$

Tax on Labor

$$U_{c} = c^{-\sigma} n^{\varphi}$$

$$cU_{cc} = -\sigma c^{-\sigma} n^{\varphi}$$

$$nU_{cn} = \varphi c^{-\sigma} n^{\varphi}$$

thus

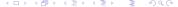
$$W_{ct} = U_{ct} + \lambda (U_{ct} + c_t U_{cct} - n_t U_{nct}) = U_{ct} (1 + \lambda - \lambda \sigma - \lambda \varphi)$$

$$W_{nt} = U_{nt} + \lambda (U_{nt} + c_t U_{cnt} - n_t U_{nnt}) = U_{nt} (1 + \lambda - \lambda \sigma + \lambda (\varphi - 1))$$

The foc of the Ramsey problem gives

$$\frac{-W_{nt}}{W_{ct}} = F_{nt}$$

Replacing the expressions for W_{nt} and W_{ct}



Alternative Tax Scheme

$$\frac{-U_{nt}}{U_{ct}} \cdot \frac{1 + \lambda - \lambda \sigma + \lambda(\varphi - 1)}{1 + \lambda - \lambda \sigma - \lambda \varphi} = F_{nt}$$

and hence the optimal labor tax rate solves:

$$1 - \tau_{lt} = \frac{1 + \lambda - \lambda \sigma + \lambda(\varphi - 1)}{1 + \lambda - \lambda \sigma - \lambda \varphi}$$

for $t \geq 1$. Therefore τ_{lt} is constant.

Following analogous steps when the utility function is as in the second line we also conclude that the tax rate on labor is constant. QED.

Consider the budget constraint of a household subject to a net income tax rates and investment tax credits as follows:

$$\sum_{t=0}^{\infty} p_t(i_t + c_t) = \sum_{t=0}^{\infty} p_t[(n_t w_t + v_t k_t) - \tau_t (n_t w_t + v_t k_t - i_t)]$$

where the law of motion of capital is

Alternative Tax Scheme

Using the law of motion of capital we obtain

$$\sum_{t=0}^{\infty} p_t([k_{t+1} - k_t(1-\delta)][1-\tau_t] + c_t) = \sum_{t=0}^{\infty} p_t[(n_t w_t + v_t k_t)(1-\tau_t)]$$

The terms with k_{t+1} are

$$k_{t+1} \left[p_t \left(1 - \tau_t \right) - p_{t+1} \left(1 - \tau_{t+1} \right) \left(\left(1 - \delta + \upsilon_{t+1} \right) \right] \right]$$

so setting them to zero we obtain

$$1 + r_{t+1} = \frac{1 - \tau_{t+1}}{1 - \tau_t} (1 - \delta + \upsilon_{t+1})$$

Thus, if income tax rates are constant, $\tau_{t+1} = \tau_t$, we obtain

$$r_{t+1} + \delta = v_{t+1}$$

which is the same expression that is obtained if net capital income is taxed at the rate $\tau_{t+1} = 0$. A constant income tax rate together with an investment tax credit are equivalent to a constant labor income tax and a zero tax on capital income.