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Ramsey Model

A Simple Neoclassical Growth Model

max
{ct ,kt+1,it}

∞

∑
t=0

βtU (ct )

s.t. ct + it = f (kt )

kt+1 = (1− δ) kt + it
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Dynamic Macro problem

Setup the dynamic problem

Determine the exogenous parameters and the endogenous allocations
and prices.

Write First Order Conditions (FOCs) and simplify them

Solve for the Steady State solution in terms of parameters

Comparative Statics on the exogenous parameters

Solve for the transitional dynamics

Comparative statics for the speed of convergence
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First Order Conditions

[ct ] : βtuc (ct ) = λt

[kt+1] : λt = λt+1 (1− δ+ fk ,t+1)

Taking U (c) = log c , f (k) = Akα ⇒

1
ct
=
1− δ+ αAkα−1

t+1

ct+1
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Steady State:

ct = c̄, kt = k̄ ⇒

k̄ =

(
αA
1− δ

) 1
1−α

ı̄ = δk̄

c̄ = A
(

αA
1− δ

) α
1−α
(
1− αδ

1− δ

)
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Capital choices and capital dynamics
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Transition
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Transition Paths For Two Economies
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Policy Function

Seyed Ali Madanizadeh Sharif U. of Tech. () Quantitative Dynamic Programming April 2019 11 / 101



Dynamic Programming

Dynamic Programming version of the Problem

V (k) = max
{c ,k ′,i}

{
U (c) + βV

(
k ′
)}

s.t. c + i = f (k)

k ′ = (1− δ) k + i

Simplified:

V (k) = max
k ′

{
U
(
f (k) + (1− δ) k − k ′

)
+ βV

(
k ′
)}
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Dynamic Programming: General Form

Recursive Problem: Bellman Equation

V (x) = max
{y∈Γ(x )}

{F (x , y) + βV (y)}

maximizer of the RHS is maximized by the policy function g(x)⇒

V (x) = F (x , g (x)) + βV (g (x))

Sequence problem

V ∗ (x0) = max
xt+1

∞

∑
t=0

βtF (xt , xt+1)

s.t xt+1 ∈ Γ (xt ) for all t ≥ 0
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Dynamic Programming

Principle of Optimality:

V (x) = V ∗ (x) for all x
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Dynamic Programming and Contraction mapping

Definition: Let (S , ρ) be a metric space. Let T : S → S be an
operator. T is a contraction with modulus β ∈ (0, 1) if

ρ (Tx ,Ty) ≤ βρ (x , y)

In our case, S will be the set of continuous and bounded functions
from X to R, with the norm sup
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Dynamic Programming

Contraction Mapping (CM) Theorem: If T is a contraction in (S , ρ)
with modulus β, then

1 there is a unique fixed point s∗ ∈ S , such that

s∗ = Ts∗

2 iterations of T converge to the fixed point

ρ (T ns0, s
∗) ≤ βnρ (s0, s

∗)

for any s0 ∈ S .
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Dynamic Programming

Define the Bellman operator T as

(Tv) (x) = max
{y∈Γ(x )}

{F (x , y) + βV (y)}

Assume F is bounded and continuous, and that Γ is continuous and
has compact range.

Theorem: T maps the set of continuous and bounded functions S into
itself. Moreover T is a contraction.

and under regular conditions v ∗ is increasing and concave.
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Dynamic Programming: FOCs

Euler Equation:

0 = Fy (x , g (x)) + βV ′ (g (x))

Envelope Condition:

V ′ (x) = Fx (x , g (x))
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Dynamic Programming: FOCs

Graphical Rperesentation
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Example 1

For the neoclassical growth model we obtain:

U ′(f (k)− g(k)) = βV ′(g(k))

V ′(k) = U ′(f (k)− g(k))f ′(k)
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Example 2

Linear utility in the neoclassical growth model. Let U(c) = c and

f (k) = F (k, 1) + (1− δ)k

where G is a neoclassical production function: strictly increasing and
strictly concave in k, satisfying Inada conditions. Assume that
0 ≤ k ′ ≤ f (k) then

V (k) = f (k)− k∗ + β
f (k∗)− k∗
1− β
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Example 3

Consider the Neoclassical growth model with log utility,
Cobb-Douglas production function and 100% depreciation

F (x , y) = log (xα − y)
Γ (x) = [0, xα]

then V is of the form

V (x) = a+ b log x

g (x) = cxα
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Example 4

Consider the problem of an agent with wages w that saves with safe
gross rate of return (1+ r) . The budget constraint is

x ′ + c = x(1+ r) + w

where x is the beginning of period wealth, and x ′ are savings. Let
β(1+ r) = 1, w > 0, and U be strictly increasing, bounded, strictly
concave, and C 2. Then:

g (x) = x

c(x) = w + rx

V (x) =
U(w + rx)
1− β
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Example 5

Adjustment cost model

F (x , y) = −a
2
y2 − b

2
(y − x)2

Γ (x) = R

Then
V (x) = −c

2
x2
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Computation: Value Function Iteration

The value function V (.) can be obtained by an iterative technique:

Value Function Iteration (VFI) - directly computes V (x) and uses it
to obtain the optimal policy functions. Usually focuses on solving the
Bellman equation directly.

Theoretical Algorithm

1 Start with a guess– some initial function w (.)
2 successively improve it by the Bellman Operator

(Tw) (x) = max
{y∈Γ(x )}

{F (x , y) + βw (y)} (1)

3 Iteratively applying T from initial condition w produces a sequence of
functions w ,Tw ,T (Tw) = T 2w , . . . that converges uniformly to
V ∗.
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Computation: Value Function Iteration

1 Begin with an array of values {w1, ...,wI }, typically representing the
values of some initial function w on the grid points {k1, ..., kI }

2 build a function ŵ on the state space R+ by interpolating the points
{w1, ...,wI } .

3 By repeatedly solving (1) obtain and record the value Tŵ(ki ) on
each grid point ki

4 Unless some stopping condition is satisfied, set {w1, ...,wI } =
{Tŵ (k1) , ...,Tŵ (kI )} and go to step 2
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Computation: Value Function Iteration
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Computation: Value Function Iteration
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Computation: Policy Function Iteration

Policy Function Iteration (PFI) - computes the optimal policies
directly.

Often relies on the first order conditions alone.

But the additional assumptions of di erentiability and concavity are
not always satisfied so we often can not use it.

It is also usually very sensitive, as it relies on non-linear equation
solvers.

VFI is extremely robust and can solve virtually any (well defined)
dynamic programming problem, But it can be slow and subject to a
curse of dimensionality.

It relies on non-linear optimization, usually using discrete grids. The
best approach is to frst characterize the problem first and then choose
the more suitable method.
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Computation: Policy Function Iteration

Guess a policy function g (0) (k) (Use the M grids on [0, k∗] and set

the policy values for kj =
j
M k
∗ as g (0)j )

For any n = 0, 1, ... iterate the followings until convergence

1 Construct V ′(n) (k) using V ′(n)(k) = U ′(f (k)− g (n)(k))f ′(k)
2 Use V ′(n) (k) and solve for k ′ as the solution to
U ′(f (k)− k ′) = βV ′(k ′)

3 Set g (n+1) (k) = k ′ (k) .
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Computation: Euler Equation Iteration

Euler Equation Iteration (EEI): for each k, it calculates the optimal
policy by iterating on the Euler equation:

0 = Fy (x , g (x)) + βV ′ (Fx (g (x) , g (g (x))))

For each x , we search for a value for x ′ = g (x) such that the N ′th
iteration converges to the steady state value.

By convergence, we mean that it is close enough to the steady state.

Envelope Condition:

V ′ (x) = Fx (x , g (x))
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Algorithm: Euler Equation Iteration

For each x0, guess x ′0 = x1.

Define x2 that satisfies the following eqaution for n = 0

0 = Fy (xn, xn+1) + βV ′ (Fx (xn+1, xn+2))

Then continue this procedure for each n ≤ N
check weather |xN − xSS | < ε

If so, algorith terminates and return x ′0 = x1.

If not, use the bisection (or any other search algorithm) to update x1
and redo the procedure, until convergence.

Seyed Ali Madanizadeh Sharif U. of Tech. () Quantitative Dynamic Programming April 2019 32 / 101



Adding a Shock

The first step is to modify the problem to include a production shock.

The shock sequence will be denoted {ζt} and assumed to be IID for
simplicity.

Many treatments include ζt as one of the state variables but this can
be avoided in the IID case if we choose the timing appropriately.
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Stochastic Neoclassical Growth Model

Consider a simple Consumption-Investment problem of a Social
problem with productivity shock
Timing

1 At the start of period t, current output yt is observed
2 Consumption ct is chosen, and the remainder yt − ct is used as
productive capital.

3 The shock ξt+1 is realized.
4 Production takes place, yielding output yt+1 = f (yt − ct )ξt+1
The “current” shock ξt+1 has subscript t + 1 because it is not in the
time t information set
The production function f is assumed to be continuous
The shock is multiplicative by assumption– this is not the only
possibility
Depreciation is not made explicit but can be incorporated into the
production function
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Related Sequential Problem

max
{ct}

E

[
∞

∑
t=0

βtU (ct )

]

s.t. yt+1 = f (yt − ct ) ξt+1
0 ≤ ct ≤ yt
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Bellman Equation with Uncertainty

Bellman Equation:

V (y) = max
{0≤c≤y}

{U (c) + βE [V (f (y − c) ξ)]}
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Bellman Equation with Uncertainty

An Example: log ξ˜N (0, σ) and

U (c) = log c

f (k) = kα

Close Form Solution
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Bellman Equation with IID shocks

Consider a simple Consumption Saving problem of a HH with
uncertain labor endowment st that follows an IID Shock

max
{ct}

E

[
∞

∑
t=0

βtU (ct )

]

s.t. ct + at+1 = (1+ r) at + wst
0 ≤ ct

at+1 ∈ A
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Bellman Equation with IID shocks

Define y = (1+ r) a+ ws

Ṽ (y) = max
{a′≤y}

{
U
(
y − a′

)
+ βE

[
Ṽ
(
(1+ r) a′ + ws ′

)]}
Graphical Representation of the solution
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Bellman Equation with Uncertainty

V (y) = max
{0≤c≤y}

{U (c) + βE [V (f (y − c) ξ)]}

Solution: Define the Bellman Operator

Tw (y) = max
{0≤c≤y}

{U (c) + βE [w (f (y − c) ξ)]}

We look for the operator fixed point: Tv ∗ = v ∗.
Value Function Iteration:

wn+1 (y) = max
{0≤c≤y}

{U (c) + βE [wn (f (y − c) ξ)]}

wn converges to V
We can use Monte Carlo to approximate

E [w (f (y − c) ξ)] ' 1
R

R

∑
r=1

w (f (y − c) ξr )
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Bellman Equation with State-dependent shocks

Shocks generally evolve as a Markov Chain

Markov Chain:

Suppose a random process st can have m-states in each time t.
Suppose P is transition matrix such that the probability of going from
state i to state j equals Pij .
Then the probability density πt+1 = P ′πt

AR Processes are other samples of Markov Chains
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Bellman Equation with Uncertainty

Bellman Equation with State Dependent shock:

V (x , ξ) = max
{u}

{
r (x , u, ξ) + βE

[
V
(
x ′, ξ ′

)
|ξ
]}

x ′ = g (x , u, ξ)

FOC:

∂r
∂u
(x , u, ξ) + βE

[
∂g
∂u
(x , u, ξ)

∂

∂x ′
V
(
x ′, ξ ′

)
|ξ
]
= 0

EC:

V ′ (x) =
∂r
∂x
(x , u∗, ξ) + βE

[
∂g
∂x
(x , u∗, ξ)

∂

∂x ′
V
(
x ′, ξ ′

)
|ξ
]

where u∗ = h (x , ξ) .
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Bellman Equation with State-dependent shocks

Stochastic Neoclassical Growth Model

V (k, ξ) = max
{0≤k ′≤ξf (k )}

{
U
(
ξf (k)− k ′

)
+ βE

[
V
(
k ′, ξ ′

)
|ξ
]}

where ξ ′ = ρξ + ε

Then k ′ = g (k, ξ)

Remember kt+1 = akt + bξt
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Bellman Equation with State-dependent shocks

Consider a simple Consumption Saving problem of a HH with
uncertain labor endowment st that follows a markov chain

max
{ct}

E

[
∞

∑
t=0

βtU (ct )

]

s.t. ct + at+1 = (1+ r) at + wst
0 ≤ ct

at+1 ∈ A
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Bellman Equation with State-dependent shocks

Consumption Saving problem

V (a, s) = max
{0≤c}

{
U
(
(1+ r) a+ ws − a′

)
+ βE

[
V
(
a′, s ′

)
|s
]}

then a′ = g (a, s) : Show graphically (for each state)
If shocks are IID, then:

V (a, s) = max
{0≤c}

{
U
(
(1+ r) a+ ws − a′

)
+ βE

[
V
(
a′, s ′

)]}
Define y = (1+ r) a+ ws

Ṽ (y) = max
{a′≤y}

{
U
(
y − a′

)
+ βE

[
Ṽ
(
(1+ r) a′ + ws ′

)]}
where V (a, s) = Ṽ ((1+ r) a+ ws)
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Discrete Dynamic Programming

A discrete DP is a maximization problem with an objective function
of the form:

E

[
∞

∑
t=0

βt r (st , at )

]
st is the state variable: st ∈ S
at is the action: at ∈ A (st )
β is a discount factor

r(st , at ) is interpreted as a current reward when the state is st and
the action chosen is at .

Each pair (st , at ) pins down transition probabilities Q(st , at , st+1) for
the next period state st+1
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Discrete Dynamic Programming

Actions influence not only current rewards but also the future time
path of the state

The essence of dynamic programming problems is to trade off current
rewards vs favorable positioning of the future state (modulo
randomness)

Examples:

consuming today vs saving and accumulating assets
accepting a job offer today vs seeking a better one in the future
exercising an option now vs waiting
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Discrete Dynamic Programming

Define

(Tv) (s) = max
a∈A(s)

{
r (s, a) + β ∑

s ′∈S
v
(
s ′
)
Q
(
s, a, s ′

)}

T is monotone and a contraction mapping with module β

Thus, it has a unique fixed point:

v ∗ (s) = max
a∈A(s)

{
r (s, a) + β ∑

s ′∈S
v ∗
(
s ′
)
Q
(
s, a, s ′

)}
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Bellman Equation with State-dependent shocks

Discretize the grids for A = {a1 < ... < an} ⇒ for
i ∈ {1, ...,m} , h ∈ {1, ..., n}

V (ah, si ) = max
{0≤c ,a′∈A}

{
U
(
(1+ r) ah + wsi − a′

)
+ β

m

∑
j=1
PijV

(
a′, si

)}

The Curse of Dimentionality
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Bellman Equation with State-dependent shocks

Suppsoe m = 2 (two employment state (high and low))
Define two n ∗ 1 vectors vj where vj (i) = v (ai , sj )
Define two n ∗ n matrices Rj where
Rj (i , h) = U ((1+ r) ai + wsi − ah)
Define an operator T ([v1, v2]) that maps a pair of vectors [v1, v2]
into a pair of vectors [Tv1,Tv2]:

Tv1 = max
{
R1 + βP111v ′1 + βP121v ′2

}
Tv2 = max

{
R2 + βP211v ′1 + βP221v ′2

}
Then the Bellman Equation is

[v1, v2] = T ([v1, v2])

This can be solved by iteration:

[v1, v2]r+1 = T ([v1, v2]r )
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Log Linearization

Finding Steady States

Log-Linearize around the steady state

Use State Space Guess and Verify Method

kt+1 = akt + bξt
ct = dkt + eξt
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Linear Quadratic Dynamic Programming
The optimal linear regulator problem

V (x) = max
{ut}
−

∞

∑
t=0

(
x ′tRxt + u

′
tQut

)
s.t. xt+1 = Axt + But

or
V (x) = max

u
−
{(
x ′Rx + u′Qu

)
+ V (Ax + Bu)

}
Guess:

V (x) = −x ′Px
Equivalent to:

−x ′Px = max
u
−
{(
x ′Rx + u′Qu

)
− (Ax + Bu)′ P (Ax + Bu)

}
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Linear Quadratic Dynamic Programming
The optimal linear regulator problem

Solution

V (x) = −x ′Px
u = −Fx

F =
(
Q + B ′PB

)−1 B ′PA
P = R + A′PA− A′PB

(
Q + B ′PB

)−1 B ′PA
Called the Algebraic Matrix Riccatti Equation
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Linear Quadratic Dynamic Programming
The optimal linear regulator problem

Value function iteration

Start from P0 = 0

Pj+1 = R + A′PjA− A′PjB
(
Q + B ′PjB

)−1 B ′PjA
Fj+1 =

(
Q + B ′PjB

)−1 B ′PjA
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Linear Quadratic Dynamic Programming
Discounted linear regulator problem

V (x) = max
{ut}
−

∞

∑
t=0

βt
(
x ′tRxt + u

′
tQut

)
s.t. xt+1 = Axt + But

or
V (x) = max

u

{(
x ′Rx + u′Qu

)
+ βV (Ax + Bu)

}
Solution

V (x) = −x ′Px
u = −Fx

F = β
(
Q + B ′PB

)−1 B ′PA
P = R + βA′PA− β2A′PB

(
Q + βB ′PB

)−1 B ′PA
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Linear Quadratic Dynamic Programming
Discounted linear regulator problem

Policy improvement algorithm

Starting from an initial F0 for which the eigenvalues of A−BF0 are less
than 1/

√
β in modulus, the algorithm iterates on the two equations:

Pj+1 = R + F ′jQFj − β
(
A− BFj

)′ Pj (A− BFj )
Fj+1 = β

(
Q + βB ′PjB

)−1 B ′PjA
This is an example of a discrete Lyapunov or Sylvester equation

Pj =
∞

∑
k=0

βk
(
A− BFj

)′k (R + F ′jQFj) (A− BFj )k
If the eigenvalues of the matrix A− BFj are bounded in modulus by
1/
√

β, then a solution of this equation exists.
This algorithm is typically much faster than the algorithm that iterates
on the matrix Riccati equation.
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Linear Quadratic Dynamic Programming
The stochastic optimal linear regulator problem

V (x) = max
{ut}
−E0

∞

∑
t=0

βt
(
x ′tRxt + u

′
tQut

)
s.t. xt+1 = Axt + But + C εt+1

where εt+1 is an (n× 1) vector of random variables that is independently
and identically distributed according to the normal distribution with mean
vector zero and covariance matrix.

E εt ε
′
t = I
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Linear Quadratic Dynamic Programming

Solution

V (x) = −x ′Px − d
u = −Fx

F = β
(
Q + B ′PB

)−1 B ′PA
P = R + βA′PA− β2A′PB

(
Q + βB ′PB

)−1 B ′PA
d = β (1− β)−1 tr

(
PCC ′

)
Theorem
Certainty Equivalence Principle: The feedback rule that solves the
stochastic optimal linear regulator problem is identical with the rule for
the corresponding nonstochastic linear optimal regulator problem.
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Linear Quadratic Dynamic Programming
Stability

Substituting the optimal control ut = −Fxt into the law of motion

xt+1 = (A− BF )xt

The system is said to be stable if lim t→∞xt = 0 starting from any
initial x0 ∈ Rn.
Assume that the eigenvalues of (A− BF ) are distinct, and use the
eigenvalue decomposition A− BF = DΛD−1

xt = DΛtD−1x0

Evidently, the system is stable for all x0 ∈ Rn if and only if the
eigenvalues of A−BF are all strictly less than unity in absolute value.
Then (A− BF ) is said to be a “stable matrix.”
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Linear Quadratic Dynamic Programming
Stability

Definition
The pair (A,B) is said to be stabilizable if there exists a matrix F for
which (A− BF ) is a stable matrix.

Theorem
If (A,B) is stabilizable and R is positive definite, then under the optimal
rule F , (A− BF ) is a stable matrix.
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Example: Adjustment cost model (1)

Cost minimization problem with convex adjustment cost

F (x , y) = −a
2
y2 − b

2
(y − x)2

Γ (x) = R

Then
V (x) = −c

2
x2
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Example: Adjustment cost model (2)

Firm’s value maximization problem (increasing marginal cost)

V (y) = max
y ′

{
qy − k

2
y2 − 0.5d

(
y ′ − y

)2
+ βV

(
y ′
)}

FOC:
βVy

(
y ′
)
= d

(
y ′ − y

)
EC:

Vy (y) = q − ky + d
(
y ′ − y

)
Guess:

y ′ = a+ by

V (y) = e + fy + 0.5gy2

Seyed Ali Madanizadeh Sharif U. of Tech. () Quantitative Dynamic Programming April 2019 62 / 101



Example: Adjustment cost model (2)

Solution

β
(
f + gy ′

)
= d

(
y ′ − y

)
y ′ =

βf + dy
d − βg

⇒ a =
βf

d − βg
, b =

d
d − βg

Vy (y) = f + gy = p − ky + d
(
y ′ − y

)
= (p + da) + (db− d − k) y

f = p + da

g = db− d − k = d2

d − βg
− d − k

g ′ = g/d , k ′ = k/d

g ′ =
1

1− βg ′
− 1− k ′

⇒
(
1+ k ′ + g ′

) (
1− βg ′

)
= 1

0 = k ′ −
(
1+ k ′

)
βg ′ + g ′ − βg ′2

βg ′2 +
(
1− β− k ′β

)
g ′ − k ′ = 0
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Example: Adjustment cost model (3)

Firm’s value maximization problem (Constant marginal cost)

V (y) = max
y ′

{
py − 0.5d

(
y ′ − y

)2
+ βV

(
y ′
)}

FOC:
βVy

(
y ′
)
= d

(
y ′ − y

)
EC:

Vy (y) = p + d
(
y ′ − y

)
Guess:

y ′ = a+ by

V (y) = e + fy + 0.5gy2
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Example: Adjustment cost model (3)

Solution

β
(
f + gy ′

)
= d

(
y ′ − y

)
y ′ =

βf + dy
d − βg

⇒ a =
βf

d − βg
, b =

d
d − βg

Vy (y) = f + gy = p + d
(
y ′ − y

)
= (p + da) + (db− d) y

f = p + da

g = db− d = d2

d − βg
− d ⇒

(
1+

g
d

) (
1− β

g
d

)
= 1

0 =
g
d

(
1− β− β

(g
d

))
⇒ g = d

(
1− β

β

)
, 0

a =
β

1− β

p
d
, b = 1, g = 0, f =

1
1− β

p
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Example: Adjustment cost model (4)

Firm’s value maximization problem (Constant marginal cost, dynamic
states)

V (y , p) = max
y ′

{
py − 0.5d

(
y ′ − y

)2
+ βEV

(
y ′, p′

)}
p′ = Ap + Bξ

FOC:
βEVy

(
y ′, p′

)
= d

(
y ′ − y

)
EC:

Vy (y , p) = p + d
(
y ′ − y

)
y ′ = g (y , p)
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Dynamic Recursive Equilibrium

Up to now, we have studied single-agent problems where components
of the state vector not under the control of the agent were taken as
given.

Now we describe multiple-agent settings in which some of the
components of the state vector that one agent takes as exogenous are
determined by the decisions of other agents.

We study partial equilibrium models of a kind applied in
microeconomics

Rational expectations or recursive competitive equilibrium
Markov perfect equilibrium
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Dynamic Recursive Equilibrium

Start with a simple example: adjustment cost model

max
∞

∑
t=0

βtRt

Rt = ptyt − 0.5d (yt+1 − yt )2

The firm is a price taker:

pt = A0 − A1Yt

The firm believes that marketwide output follows the law of motion:

Yt+1 = H0 +H1Yt ≡ H(Yt )
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Dynamic Recursive Equilibrium

v (y ,Y ) = max
y ′

{
A0y − A1Yy − 0.5d

(
y ′ − y

)2
+ βV

(
y ′,Y ′

)}
s.t. Y ′ = H(Y ) = H0 +H1Y (2)

FOC
βVy

(
y ′,Y ′

)
= d

(
y ′ − y

)
EC:

Vy (y ,Y ) = A0 − A1Y + d
(
y ′ − y

)

Seyed Ali Madanizadeh Sharif U. of Tech. () Quantitative Dynamic Programming April 2019 69 / 101



Dynamic Recursive Equilibrium

The firm’s optimal Policy

y ′ = h (y ,Y )

n identical firms, setting Yt = nyt makes the actual law of motion for
output for the market

Y ′ = nh (Y /n,Y ) (3)

Thus, when firms believe that the law of motion for marketwide
output is equation 2, their optimizing behavior makes the actual law
of motion equation 3.

A recursive competitive equilibrium equates the actual and perceived
laws of motion
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Dynamic Recursive Equilibrium

Definition
A recursive competitive equilibrium (a rational expectations equilibrium) of
the model with adjustment costs is a value function v(y ,Y ), an optimal
policy function h(y ,Y ), and a law of motion H(Y ) such that:
a. Given H, v(y ,Y ) satisfies the firm’s Bellman equation and h(y ,Y ) is
the optimal policy function.
b. The law of motion H satisfies H(Y ) = nh(Y /n,Y ).

The firm’s optimum problem induces a mapping Φ from a perceived
law of motion for capital H to an actual law of motion Φ(H).
Try to address this problem by choosing some guess H0 for the
aggregate law of motion and then iterating with Φ.
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Dynamic Recursive Equilibrium

NO: We cannot Iterate.

Unfortunately, the mapping Φ is not a contraction.

In particular, there is no guarantee that direct iterations on F
converge 1

Fortunately, there is another method that works here

The method exploits a general connection between equilibrium and
Pareto optimality expressed

in the fundamental theorems of welfare economics (see, e.g,
[MCWG95])

Lucas and Prescott [LP71] used this method to construct a rational
expectations equilibrium
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Dynamic Recursive Equilibrium

A planning problem as a solution method

The solution strategy is to match the Euler equations of the market
problem with those for a planning problem that can be solved as a
single-agent dynamic programming problem.

The optimal quantities from the planning problem are then the
recursive competitive equilibrium quantities, and the equilibrium price
can be coaxed from shadow prices for the planning problem.

St = S (Yt ,Yt+1) =
∫ Yt

0
(A0 − A1x) dx − 0.5d (Yt+1 − Yt )2

The planning problem is to choose a production plan to maximize

V (Y ) =
∞

∑
t=0

βtS (Yt−1,Yt ) for a given Y0
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Dynamic Recursive Equilibrium

V (Y ) = max
Y ′

{
A0 −

A1
2
Y 2 − 0.5d

(
Y ′ − Y

)2
+ βV

(
Y ′
)}

FOC:
−d

(
Y ′ − Y

)
+ βV ′

(
Y ′
)
= 0

EC:
V ′ (Y ) = A0 − A1Y + d

(
Y ′ − Y

)
For n = 1, we set yt = Yt . We get the same equations.
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Dynamic Recursive Equilibrium

Guess:
Y ′ = H0 +H1Y

Solve for H0,H1. Then we can solve for h (y ,Y ) .

Seyed Ali Madanizadeh Sharif U. of Tech. () Quantitative Dynamic Programming April 2019 75 / 101



Recursive Competitive Equilibrium

Let x be a vector of state variables under the control of a
representative agent

Let X be the vector of those same variables chosen by “the market.”

Let Z be a vector of other state variables chosen by “nature”, that is,
determined outside the model

v (x ,X ,Z ) = max
u

{
R (x ,X ,Z , u) + βv

(
x ′,X ′,Z ′

)}
s.t. x ′ = g (x ,X ,Z , u) (4)

X ′ = G (X ,Z )

Z ′ = ζ (Z )

The solution of the representative agent’s problem is a decision rule

u = h (x ,X ,Z ) (5)
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Recursive Competitive equilibrium

To make the representative agent representative, we impose X = x ,
but only “after”we have solved the agent’s decision problem.

Substituting equation 5 and X = xt into equation 5 gives the actual
law of motion

X ′ = GA (X ,Z )

where
GA (X ,Z ) = g (X ,X ,Z , h (X ,X ,Z ))
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Recursive Competitive equilibrium

Definition
A recursive competitive equilibrium (rational expectations equilibrium) is a
policy function h, an actual aggregate law of motion GA , and a perceived
aggregate law G such that (a) Given G , h solves the representative agent’s
optimization problem; and (b) h implies that GA = G .
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Recursive Competitive equilibrium

Kydland Prescott (1982) & Mehra and Prescott (1980): Big K , Little
k

Define the economywide capital as K and household’s own capital
stock k , which it has control on it.

In Equilibrium k = K .

Household’s state variables are (k,K ) .

Household chooses consumption and investment (c, x)

Household perceives that the capital K changes as
K ′ = (1− δ)K + X (K )
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Recursive Competitive equilibrium

The representative firm

max
K ,H

F (K ,H)− rK − wH

FOC:

w = Fh (K ,H)

r = Fk (K ,H)
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Recursive Competitive equilibrium

HH’s problem:

v (k ,K ) = max
c ,x≥0

{
u (c) + βv

(
k ′,K ′

)}
c + x ≤ r (K ) k + w (K )

k ′ = (1− δ) k + x

K ′ = (1− δ)K + X (K ) ≡ D (K )

Let d (k ,K ) be the optimal decision of the Household.

Take labor supply h = 1.

In Equilibrium k = K .

d (.) should be consistent: d (k,K ) = D (K )
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Recursive Competitive equilibrium

Here: A recursive competitive Equilibrium is a value function v (k,K )
and a policy function d (k,K ) (which gives decisions on
c (k,K ) , x (k,K )) and an aggregate policy function D (K ) (which
gives aggregte decisions C (K ) ,X (K ) and factor prices r (K ) ,w (K )
such that these functions satisfy

1 the HH’s problem
2 the Firm’s problem FOC necessary and suffi cient conditions
3 the consistency of individual and aggregate decisions; i.e.
d (K ,K ) = D (K )

4 The Aggregate Resource Constraint: C (K ) + X (K ) = Y (K )
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Recursive Competitive equilibrium

The statement that RCE is pareto optimal implies that v (K ,K ) and
d (K ,K ) coincides with V (K ) and D (K ) for the social planner
problem.
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Recursive Competitive equilibrium: Stochastic

We have shcoks z :

z ′ = ρz + ε

e˜N (0, σε)

The representative firm

max
K ,H

ezF (K ,H)− rK − wH

FOC:

w = Fh (K ,H)

r = Fk (K ,H)
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Recursive Competitive equilibrium: Stochastic

HH’s state variable (z , k,K ) , Aggregate state variable (z ,K )

HH’s problem:

v (z , k,K ) = max
c ,x ,h≥0

{
u (c , 1− h) + βE

[
v
(
z ′, k ′,K ′

)
|z
]}

c + x ≤ r (z ,K ) k + w (z ,K ) h

k ′ = (1− δ) k + x

K ′ = (1− δ)K + X (z ,K ) ≡ D (z ,K )
z ′ = ρz + ε

c ≥ 0, 0 ≤ h ≤ 1

Let d (k ,K ) be the optimal decision of the Household.

Take labor supply h = 1.

In Equilibrium k = K .

d (.) should be consistent: d (k,K ) = D (K )
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Recursive Competitive equilibrium: General form

RCE for Homogenous Agent models

v (z , s,S) = max
d

{
r (z , s, d ,S ,D) + βE

[
v
(
z ′, s ′,S ′

)
|z
]}

(6)

z ′ = A (z) + ε′

s ′ = B (z , s, d ,S ,D)

S ′ = B (z , S ,D,S ,D)

D = D (z , S)

RCE consists of an individual’s decision rule d (.), an aggregate rule
D (.) and a value function v (.) such that

1 Given D, the value function v (.) satisfies 6 and d (.) is the associated
decision rule.

2 function D satisfies D (z , S) = d (z , s, S) .
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Markov Perfect Equilibrium

Consider a dynamic model of duopoly.

A market has two firms.

Each firm recognizes that its output decision will affect the aggregate
output and therefore influence the market price.

Thus, we drop the assumption of price-taking behavior.

The one-period return function of firm i is

Rit = pityit − 0.5d (yi ,t+1 − yit )2

There is a demand curve:

pt = A0 − A1(y1t + y2t ).
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Applications: Job Search Model: Equilibrium
Unemployment

Let V (w) be the total lifetime value accruing to a worker who has
offer wage w and should decide whether to accept or reject the offer.

Here value means the value of the objective function ∑∞
t=0 βtyt when

the worker makes optimal decisions now and at all future points in
time, where yt = w if he accepts and yt = c if he deicdes to be
unemployed in period t.

So

V (w) = max
{

w
1− β

, c + β

[∫ B

0
v
(
w ′
)
dF
(
w ′
)]}
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Applications: Job Search Model: Equilibrium
Unemployment

v (w) =

{
w̄
1−β = c + β

[∫ B
0 v (w

′) dF (w ′)
]
if w ≤ w̄

w
1−β if w ≥ w̄
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Applications: Job Search Model: Equilibrium
Unemployment

Evaluating v(w) results in:

w̄ − c = h (w̄) where h (w) ≡ β

1− β

∫ B

w

(
w ′ − w

)
dF
(
w ′
)

h′ < 0 and h′′ > 0
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Applications: Job Search Model: Equilibrium
Unemployment

The McCall Job Search Model

If currently employed, the worker consumes his wage w , receiving
utility u(w)
If currently unemployed, he

receives and consumes unemployment compensation c
receives an offer to start work next period at a wage w ′ drawn from a
known distribution p

He can either accept or reject the offer
If he accepts the offer, he enters next period employed with wage w ′

If he rejects the offer, he enters next period unemployed
(Note that we do not allow for job search while employed)
Job Termination: When employed, he faces a constant probability a of
becoming unemployed at the end of the period
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Applications: Job Search Model: Equilibrium
Unemployment

Let V (w) be the total lifetime value accruing to a worker who enters
the current period employed with wage w

U be the total lifetime value accruing to a worker who is unemployed
this period

Here value means the value of the objective function ∑∞
t=0 βtu (yt )

when the worker makes optimal decisions now and at all future points
in time.

So

V (w) = u (w) + β [(1− α)V (w) + αU ]

U = u (c) + β ∑
w ′
max

{
V
(
w ′
)
,U
}
p
(
w ′
)
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Applications: Job Search Model: Equilibrium
Unemployment

Solution:

Vn+1 (w) = u (w) + β [(1− α)Vn (w) + αUn ]

Un+1 = u (c) + β ∑
w ′
max

{
Vn
(
w ′
)
,Un

}
p
(
w ′
)
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Applications: Job Search Model: Equilibrium
Unemployment

Reservation Wage w̄ .
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Applications: Job Search Model: Equilibrium
Unemployment
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Applications: Job Search Model: Equilibrium
Unemployment
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Applications: Job Search Model: Equilibrium
Unemployment
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Continuous Problem

In Continuous form

max
{ct ,kt+1,it}

∫ ∞

0
e−ρtU (ct ) dt

s.t. ct + it = f (kt )

k̇t = it − δkt

Write the Hamiltonian:

H = U (ct ) + λ (f (kt )− δkt − ct )

FOC:

Hc = 0

ρλ− λ̇t = Hk
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Continuous Time Bellman Equation

V (xt ) = max
ut∈U

{
∆h (xt , ut ) +

1
1+ ∆ρ

V (xt+∆)

}
s.t. xt+∆ = xt + ∆g (xt , ut )

In the limit:

ρV (x) = max
ut∈U

{
h (x , u) + V ′ (x) g (x , u)

}
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FOCs

0 = hu (x , u∗ (x)) + V ′ (x) gu (x , u∗ (x))

ρV (x) = h (x , u∗ (x)) + V ′ (x) g (x , u∗ (x))
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