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Estimation

I So how do we estimate the model and do policy analysis? There
are really 3 different approaches:

1. Estimate full structural model (and thus data generating process)

and simulate policy effect

2. Estimate reduced form of data generating process and simulate

policy effect

3. Try to estimate policy directly without estimating full DGP

I By far the most common is the first so we will focus on that.
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Estimation

There are a few examples of the third:

I Heckman and Vytlacil in a series of papers show how to use local

instrumentalist variables to estimate policy relevant treatment

effects.

I Sufficient statistics can be used to identify some policy effects.

Raj Chetty has many such papers.

I Taber and Ichimura (2002)
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Estimation Methods

There are really two basic ways of estimating the data generation

process:

1. Maximum (Simulated) Likelihood

2. Simulation Methods

I Simulated Method of Moments (SMM)
I Indirect Inference
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Maximum Likelihood: Review

I So far, we have used ML for estimating Logit and Probit models.

I Recall that, for some random variable Yi let f (Y , θ) be the

density of Y if it is generated by a model with parameter θ

I The likelihood function just writes the function the other way: ‘

L(θ|Y ) = f (Y , θ)

Let θ0 represent the true parameter
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Maximum Likelihood: Review

I The key result is this:

E

[
L(θ|Y )

L(θ0|Y )

]
=

∫
L(θ|Y )

L(θ0|Y )
f (Y ; θ0)dY

=

∫
f (Y , θ)

f (Y , θ0)
f (Y ; θ0)dY

=

∫
f (Y , θ)dY

=1

because f (Y , θ) is a density.
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Maximum Likelihood: Review

I We use Jensen’s inequality which implies that for any random

variable Xi , the fact that log is concave implies that:

E (log(Xi )) ≤ log(E (Xi ))

I We apply this with

Xi =
L(θ|Y )

L(θ0|Y )
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Maximum Likelihood: Review

I Therefore

E

[
log

[
L(θ|Y )

L(θ0|Y )

]]
≤ log

[
E

[
L(θ|Y )

L(θ0|Y )

]]
E [log(L(θ|Y ))]− E [log(L(θ0|Y ))] ≤ log(1)

I in other words:

E [log(L(θ|Y ))] < E [log(L(θ0|Y ))]

I Thus we know that the true value of θ maximizes expected value

of the log likelihood function, E [log(L(θ|Y ))]
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Maximum Likelihood: Review

I Maximum likelihood estimator is just the sample analogue of this

I Choose θ̂ as the argument that maximizes

1

N

N∑
i=1

log(L(θ|Yi ))

I The most important result for MLE is that it is efficient.

I In particular no alternative estimator can have a lower asymptotic

variance.

I Therefore, ideally we like to estimate parameters with MLE. What

makes it hard and sometimes infeasible?
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Likelihood for the Roy Model
I Let’s assume that [

εfi

εhi

]
∼ N

(
0,

[
σff σfh

σfh σhh

])
I For a fisherman we observe whether you fish, Yi :

εhi − εfi < gf (xf , x0)− gh(xh, x0)

I and their wage Wi

Wi = gf (Xfi ,X0i ) + εfi

I so we know that εhi <Wi − gh(Xhi ,X0i )

I Then, the likelihood for each observation is:∫ Wi−gh(Xhi ,X0i )

−∞
φ
(
Wi − gf (Xhi ,X0i ); Σ

)
dεhi
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Likelihood for the Roy Model

I We get an analogous expression for hunters

I then the log Likelihood is

1

N

N∑
i=1

[
Fi log

(∫ Wi−gh(Xhi ,X0i )

−∞
φ
(
Wi − gf (Xfi ,X0i ); Σ

)
dεhi

)

+ (1− Fi ) log

(∫ Wi−gf (Xfi ,X0i )

−∞
φ
(
Wi − gh(Xfi ,X0i ); Σ

)
dεfi

)]
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Generalized Method of Moments

I Another way to estimate such a model is by GMM, simulated

method of moments, or indirect inference.

I I am not sure these terms mean the same thing to everyone, so I

will say what I mean by them but recognize it might mean

different things to different people.
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True Data Generating Process

I Lets continue to assume that the econometrician observes (Yi ,Xi )

which are i.i.d. and both Xi and Yi are potentially large

dimensional.

I We defined the data generating process in the following general

way

Xi ∼H(Xi )

ui ∼F (ui , θ)

Yi =y0(Xi , ui , θ)
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GMM

I The standard GMM model would come up with a set of moments

m(Xi ,Yi , θ)

I for which

E [m(Xi ,Yi , θ0)] = 0

I the sample analogue comes from recognizing that

1

N

N∑
i=1

m(Xi ,Yi , θ0) ≈ 0
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GMM: Minimization Problem

I But more generally we are overidentified so we choose θ̂ to

minimize [
1

N

N∑
i=1

m(Xi ,Yi , θ0)

]′
W ′
[

1

N

N∑
i=1

m(Xi ,Yi , θ0)

]

I where W can be any arbitrary positive definite matrix. In fact any

such matrix will produce a consistent and asymptotically normal

GMM estimator, the only difference will be in the asymptotic

variance of that estimator.

I But, It can be shown that taking W = Ω−1 will result in the most

efficient estimator in the class of all asymptotically normal

estimators, where

Ω = E [m(Xi ,Yi , θ0)′m(Xi ,Yi , θ0)]
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Relationship between GMM and MLE
I Actually in one way you can think of MLE as a special case of

GMM

I We showed above that

θ0 = arg max
θ

[
E (log(L(θ|Yi )))

]
I but as long as everything is well behaved this means that

E

[
∂L(θ|Yi )) log

∂θ

]
= 0

I We can use this as a moment condition

I The one very important caveat is that this is only true if the log

likelihood function is strictly concave (recall problem set 4)

I Otherwise there might be multiple solutions to the first order

conditions, but only one actual maximum to the likelihood

function
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Simulated Method of Moments

I The classic reference is ”A Method of Simulated Moments of

Estimation of Discrete Response Models Without Numerical

Integration” McFadden, EMA, 1989

I However, we will present it in a different way

I Take any function of the data that you like say g(Yi ,Xi ) (where

the dimension of g is often large)

18 / 104



GMM → SMM

I Then notice that since y0 and F (u, θ0) represent the data

generating process, then

E [g(Yi ,Xi )] =

∫ ∫
g(y0(X , u; θ0),Xi )dF (u, θ0)dH(X )

I So this means that we can do GMM with

m(Xi ,Yi , θ) = E [g(Yi ,Xi )]−
∫ ∫

g(y0(X , u; θ),Xi )dF (u, θ)dH(X )

I So what? Is this a progress?
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Cool SMM
I Here is where things get pretty cool

I for each θ, what you need to compute (simulate) is reduced to

1

N

N∑
i=1

g(Xi ,Yi )−
1

R

R∑
r=1

g

(
xr , y0(xr , ur , θ)

)
I Why? what is so cool about this?

I The nice thing about this is that we didn’t need R to be large for

every N, we only needed R to be large for the one integral.

I For MLE we had to approximate the integral well for every single

observation

I 1 Million observations and 1 day each simulation → 27.4 centuries

(1 Hour → 114 years)!

I Notice that at the true value the estimator is approximately

E [g(Yi ,Xi )]−
∫ ∫

g(y0(X , u; θ),Xi )dF (u, θ)dH(X ) = 0
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Indirect Inference

I The classic reference here is ”Indirect Inference” Gourieroux,

Monrort, and Renault, Journal of Applied Econometrics, (1993)

I Again we will think about this in a different way then them

I Think about the intuition for the SMM estimator

1

N

N∑
i=1

g(Xi ,Yi ) ≈
1

R

R∑
r=1

g

(
xr , y0(xr , ur , θ0)

)

I If I have the right data generating model taking the mean of the

simulated data should give me the same answer as taking the

mean of the actual data

I Under what conditions this can go wrong?
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Indirect Inference

I But we can generalize that idea

I If I have the right data generating model, if I use the true

parameter value, the simulated data should look the same as the

actual data

I That means whatever the heck I do to the real data, if I do exactly

the same thing to the simulated data I should get the same answer
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Indirect Inference

I Estimate auxiliary parameter β̂ using some estimation scheme in

real data

I for any particular value of θ:

1. Simulate data using data generation process:

y0(x , u, θ),H(X ),G (u, θ)

2. Estimate B̂(θ) using exactly the same estimation scheme on

simulated data

I Then choose θ to minimize:(
B̂(θ)− β̂

)′
Ω
(
B̂(θ)− β̂

)
I This is consistent because

B̂(θ0)− β̂ p−→ 0
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Indirect Inference

I The most important thing: this can be misspecified, it doesn’t

have to estimate a true causal parameter

I Creates a nice connection with reduced form stuff, we can use

2SLS or Diff in Diff as auxiliary parameters and it is clear where

identification comes from

I Can think of the analogue to the forecasting out of the sample

I we use Indirect Inference to extend the convincing identification

scheme into a structural framework
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Examples of β̂

I Moments

I Regression models

I Misspecified MLE

I Misspecified GMM

I IV

I Difference in Differences

I Regression Discontinuity

I Even Randomized Control Files
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Maximum Likelihood versus Indirect Inference

I MLE is efficient

I Indirect inference you pick auxiliary model

I Which is better is not obvious.

I Picking auxiliary model is somewhat arbitrary, but you can pick

what you want the data to fit.

I MLE essentially picks the moments that are most efficient-a

statistical criterion
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Maximum Likelihood versus Indirect Inference

I Indirect inference is often computationally easier because of the

simulation approximation of integrals

I With confidential data, Indirect Inference often is easier because

only need to use the actual data to get β̂

I A drawback of simulation estimators is that they often lead to

non-smooth objective functions

I Indirect inference preserves some of the advantages of

design-based estimation

I Map from data to parameters is more transparent

I Becomes like the forecasting experiment where we are forecasting

out of the range of the data
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Conclusion

I Structural Estimation is one very powerful method for better

understanding the economy and the real world

I For whatever reason, we don’t see much research in Iran using this

method.

I This course is designed to make the change in empirical research.

I Almost surly you will forget this material, unless you actually use

these methods in your actual research!

I don’t forget to work on problem set 5 and 6!

I Heads up: In pset 5 you should write a research proposal ...
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Cooley and Prescott (1976)

I In many instances economic theory suggests that relationships will

change over time. Lucas, for example, has shown that

econometric models, as they are now structured, are inappropriate

tools for long-term policy evaluation precisely because they

assume a stable structure. The structure of an econometric model

represents the optimal decision rules of economic agents. From

dynamic economic theory we know that optimal decision rules

vary systematically with changes in the structure of series relevant

to the decision makers.

I It follows that changes in policy will systematically alter the

structure of the series being forecasted by decision makers, and,

therefore, the behavioral relationships as well.
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Hansen and Heckman (1996)

I Kydland and Prescott are to be praised for taking the general

equilibrium analysis of Shoven and Whalley one step further by

using stochastic general equilibrium as a framework for

understanding macroeconomics

I While Kydland and Prescott advocate the use of ”well-tested

theories” in their essay, they never move beyond this slogan, and

they do not justify their claim of fulfilling this criterion in their

own research. ”Well tested” must mean more than ”familiar” or

”widely accepted” or ”agreed on by convention,” if it is to mean

anything!

I Their suggestion that we ”calibrate the model” is similarly vague.

I ... On the other hand, Kydland and Prescott never provide a

coherent framework for extracting parameters from microeconomic

data.
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Holland 1986

I The goal of the structural econometrics literature, like the goal of

all science, is to understand the causal mechanisms producing

effects so that one can use empirical versions of models to forecast

the effects of interventions never previously experienced, to

calculate a variety of policy counterfactuals and to use theory to

guide choices of estimators to interpret evidence and to cumulate

evidence across studies.

I These activities require models for understanding ”causes of

effects” in contrast to the program evaluation literature that

focuses only on the ”effects of causes”
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Recourses

I This lecture note and slides are mainly based on presentation of

Chris Taber at the university of Chicago.

I Micheal Keane also presented practical notes about Structural

estimation at the University of Chicago.

I Also lecture notes of Tony Whited from Ross School of Business

at the University of Michigan is widely incorporated.

I Lecture notes of Lucian Taylor at Wharton school in UPenn is also

used.

I More reading:

1. French and Taber (2011) Handbook chapter of Labor Economics

2. Heckman and Honroe (1991) Econometrica

3. problem set 5 and 6!

4. If you want to learn more read papers that used structural

estimation such as Rust (1987), Lucian Taylor (2010 and 2013) etc.
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Road map

I Examples

1. Supply and Demand

2. The Roy Model

I Structural and Reduced Form Models

I Identification

1. Identification of Supply and Demand

2. Identification of The Roy Model

I Estimation

1. Maximum Simulated Likelihood (MSL)

2. General Method of Moments (GMM)

3. Simulated Method of Moments (SMM)

4. Indirect Inference
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Examples
1. Supply and Demand
2. The Roy Model
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Example 1: Supply and Demand

Consider the classic simultaneous equations model in a policy

regime with no taxes:

I Supply Curve:

Qt = αsPt + X ′tβs + Z ′stγs + ut

I Demand Curve:

Qt = αdPt + X ′tβd + Z ′dtγd + νt

I We can solve for prices and quantities as:

Pt =
X ′t (βd − βs) + Z ′dtγd − Z ′stγs + νt − ut

αs − αd
(1)

Qt =
αs(X ′tβd + Z ′dtγd + νt)− αd (X ′tβs + Z ′stγs + ut)

αs − αd
(2)
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Example 1: Supply and Demand

Now suppose we want to introduce a tax on this good, imposed on

consumers. So now

Qt = αd (1 + τ)Pt + X ′tβd + Z ′dtγd + νt

Then the new equilibrium is:

Pt =
X ′t (βd − βs) + Z ′dtγd − Z ′stγs + νt − ut

αs − αd (1 + τ)

Qt =
αs(X ′tβd + Z ′dtγd + νt)− αd (1 + τ)(X ′tβs + Z ′stγs + ut)

αs − αd (1 + τ)

Assumption: taking the model seriously → all of the parameters

are policy invariant
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Example 2: The Roy Model

I Why the Roy Model? Simple intuition, hard identification, lots of

applications

I Labor Market is a village

I There are two occupations

1. Hunter

2. Fisherman

I Fish and Rabbits are completely homogeneous

I No uncertainty in number you catch
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Example 2: The Roy Model

I Wages are:

Wf =πFF

WH =πHR

I Notice that we have imposed no structure on F and R yet.

I We can’t say much without imposing the structure.
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Example 2: The Roy Model

I Once we know the model we could think of several different

policies

I One is suppose we impose a minimum wage w̄ in the fishing

sector but not in the hunting sector?

I What will this due to earnings inequality?

I Anyone who with WF < w̄ will no longer be employed in the

fishing sector and must now hunt where they earn lower wages.

I Inequality will like rise and we can determine the magnitude from

the model
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Other Examples of the Roy Model

I Effects of Affordable Care Act on labor market outcomes (Aizawa

and Fang, 2015)

I Tuition Subsidies on Health (Heckman, Humphries, and

Veramundi, 2015)

I Effects of extending lenth of payment for college loan programs on

college enrollment (Li, 2015)

I Peer effects of school vouchers on public school students (Altonji,

Huang, and Taber, 2015)

I Tax credits versus income support (Blundell, Costa Dias, Meghir,

and Shaw, 2015)

I Effects of border tightening on the U.S. government budget

constraints (Nakajima, 2015)

I Welfare effects of alternative designs of school choice programs

(Calsamiglia, Fu, and Guell, 2014)
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Structural and Reduced Form Models
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What Does Structural Mean?

I It makes no sense to say ”structural model.”

I All economic models are ”structural.”

I Usually when people say ”structural model,” they really mean

”dynamic model.”

I It makes a lot of sense to talk about ”structural” versus

”reduced-form” estimation.
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What Does Structural Mean?

No obvious answer, it means different things to different people!

at least 4 definitions.

1. Historical: The structural parameters in a simultaneous equations

model

2. Estimation of preference and technology parameters in a

maximizing model (perhaps combined with some specification of

markets)

3. Parameters are policy invariant

4. Structural as opposed to Statistical
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What Does Structural Mean?

I Structural as opposed to Statistical : A statistical model describes

the relation between two or more random variables:

y = Xβ + ε

I An economic model starts with assumptions about:

I agents’ preferences,
I constraints,
I firms’ production functions,
I some notion of equilibrium, etc.

I Then it makes predictions about the relation between observable,

often endogenous variables.
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What Does Reduced-Form Mean?

Now for many people it essentially means anything that is not

structural

I Preferred definition: reduced form parameters are a known

function of underlying structural parameters.

I fits classic Simultaneous Equation definition

I might not be invertible (say without an instrument)

I for something to be reduced form according to this definition you

need to write down a structural model

I this actually has content-you can sometimes use reduced form

models to simulate a policy that has never been implemented (as

often reduced form parameters are structural in the sense that

they are policy invariant)
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what does reduced form mean?

I For many other researchers reduced form means:

I What is the (causal) effect of X on Y?

I While structural means:

I Why does X affect Y?
I What are the magnitudes of the parameters?
I How well does theory line up with the data?
I How would the world look if one of the parameters

(counterfactually) changed?
I What would happen if you (counterfactually) shocked the system?
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”Structural” versus ”Design-Based”

I the fact that there are advantages and disadvantages makes them

complements rather than substitutes

I Avoid structural estimation if there is designed based solution for

your question

I In practice, good research uses both modeling

I There are very very few (if any?) structural paper about Iran

being explicit about identification and estimation!
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”Structural” versus ”Design-Based”

Structural Design-Based

Better on External Validity Better on Internal Validity

Map from parameters to implications

clearer

Map from data to parameters more

transparent

Formalizes conditions for external va-

lidity

Requires fewer assumptions

Forces one to think about where data

comes from

Might come from somewhere else

Easier to interpret what parameters

mean

Estimates more credible
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”Calibration” versus ”Structural Estimation”

I Calibration:

I Take many parameter values from other papers
I Usually have more parameters than moments → model isn’t

identified → can’t put standard errors on parameters
I Mainly a theoretical exercise
I Never, ever, say that in front of James Heckman!

I Structural estimation:

I Infer parameter values from the data
I Get standard errors for parameters
I An empirical exercise

Chris Taber: To me, calibration is structural estimation without

identification and standard error!
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Hansen and Heckman (1996)

I What credibility should we attach to numbers produced from their

[Kydland and Prescott] ”computational experiments,” and why

should we use their ”calibrated models” as a basis for serious

quantitative policy evaluation? The essay by Kydland and

Prescott begs these fundamental questions.

I The deliberately limited use of available information in such

computational experiments runs the danger of making many

economic models with very different welfare implications

compatible with the evidence.

I We suggest that Kydland and Prescott’s account of the

availability and value of micro estimates for macro models is

dramatically overstated. There is no filing cabinet full of robust

micro estimates ready to use in calibrating dynamic stochastic

general equilibrium models.
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Hansen and Heckman (1996)
Calibration versus Estimation

I A novel feature of the real business cycle research program is its

endorsement of ”calibration” as an alternative to ”estimation.”

I However, the distinction drawn between calibrating and estimating

the parameters of a model is artificial at best.

I Moreover, the justification for what is called ”calibration” is vague

and confusing.

I Since the Kydland-Prescott essay is vague about the operating

principles of calibration, we turn elsewhere for specificity. For

instance, in a recent description of the use of numerical models in

the earth sciences, Oreskes, Shrader-Frechette and Belitz (1994,

pp. 642, 643) describe calibration as follows:
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Hansen and Heckman (1996)
Calibration versus Estimation

I In earth sciences, the modeler is commonly faced with the inverse problem: The

distribution of the dependent variable (for example, the hydraulic head) is the

most well known aspect of the system; the distribution of the independent variable

is the least well known. The process of tuning the model: that is, the manip-

ulation of the independent variables to obtain a match between the observed

and simulated distribution or distributions of a dependent variable or variables,

is known as calibration.

I Some hydrologists have suggested a two-step calibration scheme in which the

available dependent data set is divided into two parts. In the first step, the

independent parameters of the model are adjusted to reproduce the first part

of the data. Then in the second step the model is run and the results are

compared with the second part of the data. In this scheme, the first step is

labeled ”calibration” and the second step is labeled ”verification.”

I Econometricians refer to the first stage as estimation and the

second stage as testing.
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Hansen and Heckman (1996)
Calibration versus Estimation

I In their proposed paradigm for empirical research, correlations are

to be saved and used to test models, but are not to be used as a

source of information about parameter values.

I It has become commonplace in the real business cycle research

program to match the steady-state implications of models to time

series averages.

I To an outsider, this looks remarkably like a way of doing

estimation without accounting for sampling error in the sample

means.
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Hansen and Heckman (1996): External Validity

I It can be very misleading to plug microeconometric parameter

estimates into a macroeconomic model when the economic

environments for the two models are fundamentally different.

I In fact, many of the micro studies that the ”calibrators” draw

upon do not estimate the parameters required by the models

being simulated.

56 / 104



Hansen and Heckman (1996): External Validity

I It can be very misleading to plug microeconometric parameter

estimates into a macroeconomic model when the economic

environments for the two models are fundamentally different.

I In fact, many of the micro studies that the ”calibrators” draw

upon do not estimate the parameters required by the models

being simulated.

56 / 104



”Calibration” versus ”Structural Estimation”

Both ”Calibration” and ”Structural Estimation”:

I Can assess how well model fits the data, however, no statistical

tests with calibration

I Can use model to ask counterfactual questions:

I What would happen if we shocked this variable?
I How would world look like if we changed this parameter’s value?
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(Possible) Steps for Writing Structural Paper

We expect you to write a paper for this course which hopefully will

lead to your dissertation. Here are the steps:

1. Identify the policy question to be answered

2. Write down a model that can simulate policy

3. Understanding how the model works

4. Think about identification/data (with the goal being the policy

counterfactual)

5. Estimate the model

6. Test for External Validity

7. Simulate the policy counterfactual
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Other reasons to write structural models

I Further evaluation of an established policy: we might want to

know welfare effect

I Basic Research: we want to understand the world better

I Use data to help understand model
I Use model to help understand data (use structural model as a lens)
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Identification
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Identification: Data Generating Process

I Define the data generating process in the following general way

Xi ∼H(Xi )

ui ∼F (ui , θ)

Yi =y0(Xi , ui , θ)

I The observed data is (Yi ,Xi ) with ui unobserved

I We know the model up to parameter θ

I To think of this as non-parametric we can think of θ is infinite

dimensional

θ = (θ1,F (.))

I To simulate a policy counterfactual your policy needs to be a

known manipulation of this structural model (i.e. π(θ))
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Data Generating Process: Supply and Demand

Yt =(Pt ,Qt)

Xt =(Xt ,Zdt ,Zst)

ut =(ut , νt)

θ =(αd , αs , βd , βs , γd , γd ,G (u, ν))

y0(Xi , ui ; θ) =

[
X ′t (βd−βs)+Z ′dtγd−Z ′stγs+νt−ut

αs−αd
αs(X ′t βd+Z ′dtγd+νt)−αd (X

′
t βs+Z ′stγs+ut)

αs−αd

]
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Data Generating Process: The Roy Model

I For the Roy Model we need to add some more structure to go

from an economic model into an econometric model .

I This means writing down the full data generation model.

I First a normalization is in order. We can redefine the units of F

and H arbitrarily. Lets normalize

πF = πH = 1

I We consider the model

Wfi =gf (Xfi ,X0i ) + εfi

Whi =gh(Xhi ,X0i ) + εhi

I where the joint distribution of (εfi , εhi ) is G .
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Data Generating Process: The Roy Model

I We can observe Fi and Wi :

Wi = FiWfi + (1− Fi )Whi

I Thus for the Roy model

Yi =(Fi ,Wi )

Xi =(X0i ,Xfi ,Xhi )

ut =(εfi , εhi )

θ =(gf , gh,G )

y0(Xi , ui ; θ) =

 I

(
gf (Xfi ,X0i ) + εfi > gh(Xhi ,X0i ) + εhi

)
max

(
gf (Xfi ,X0i ) + εfi , gh(Xhi ,X0i ) + εhi

)
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Identification?

I Another term that means different things to different people

I This is what it means to me:
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Identification?

I I want to think about it in an econometric way

I This will all be about the Population

I In thinking about identification we will completely ignore sampling

issues.

I The model is identified if there is a unique θ that could have

generated the population distribution of the observable data

(Xi ,Yi ).
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Identification?

I A bit more formally, let Θ be the parameter space of θ and let θ0

be the true value

I If there is some other θ1 ∈ Θ with θ1 6= θ0 for which the joint

distribution of (Xi ,Yi ) when generated by θ1 is identical to the

joint distribution of (Xi ,Yi ) when generated by θ0 then θ is not

identified.

I If there is no such θ1 then θ is identified.
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Identification of Simultaneous Equation Model

Qt = αsPt + X ′tβs + Z ′stγs + ut

Qt = αdPt + X ′tβd + Z ′dtγd + νt

I Here the hard part is going to be identifying αs and αd . Why?

I given (αs , αd , βs , βd , γs , γd ) getting the joint distribution of the

error terms is trivial

I Since this is symmetric, let’s focus on identification of αs

I We will also use the assumptions

E (ut |Xt ,Zdt ,Zst) = 0

E (νt |Xt ,Zdt ,Zst) = 0

69 / 104



Identification of Simultaneous Equation Model

I Can we just run a regression of Qt on Pt and Zt to estimate αd

and γ?

I Think about the ”reduced form equation”

Pt =
X ′t (βs − βd ) + Z ′dtγd − Z ′stγs + νt − ut

αs − αd (1 + τ)

I since νt is a direct determinant of Pt , Pt is correlated with νt so

OLS is not consistent

I So is αs identified? The key will be Zdt

I We will think about this in three different ways. The first two will

involve the use of the ”reduced form”
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Identification of Simultaneous Equation Model: Method 1

Let’s define δ∗px , δ∗pd , δ∗ps , and ν∗p implicitly as:

Pt =
X ′t (βs − βd ) + Z ′dtγd − Z ′stγs + νt − ut

αs − αd

≡Xtδ
∗
px + Z ′dtδ

∗
pd + Z ′stδ

∗
ps + ν∗p

where

δ∗px ≡
βs − βd

αs − αd

δ∗pd ≡
γd

αs − αd

δ∗ps ≡
γs

αs − αd

ν∗p ≡
νt − ut

αs − αd

Which parameters are identified?
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Identification of Simultaneous Equation Model: Method 1

I Note that E (ν∗t |Xt ,Zdt ,Zst) = 0, so one can identify

δ∗p = (δ∗px , δ
∗
pd , δ

∗
ps) by regressing Pt on Wt = (Xt ,Zdt ,Zst).

I That is:

E [W ′
tWt ]−1E [WtPt ] =E [W ′

tWt ]−1E [Wt(W ′
t δ
∗
p + ν∗p)]

=E [W ′
tWt ]−1E [WtW

′
t δ
∗
p] + E [W ′

tWt ]−1E [Wtν
∗
p ]

=δ∗p

I Notice that we used E [Wtν
∗
t ] = 0. Why?
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Identification of Simultaneous Equation Model: Method 1

I This is called the ”reduced form” equation for Pt

I Note that the parameters here are not the fundamental structural

parameters themselves, but they are a known function of these

parameters

I To me this is the classic definition of reduced form (you need to

have a structural model)

I How is this useful for identifying the model?
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Identification of Simultaneous Equation Model: Method 1

We can also solve for the reduced form for Qt

Qt =
αs(X ′tβd + Z ′dtγd + νt)− αd (X ′tβs + Z ′stγs + ut)

αs − αd

≡Xtδ
∗
qx + Z ′dtδ

∗
qd + Z ′stδ

∗
qs + ν∗q

where

δ∗qx ≡
αsβs − αdβd

αs − αd

δ∗qd ≡
αsγd

αs − αd

δ∗qs ≡
−αdγs

αs − αd

ν∗p ≡
αsνt − αdut

αs − αd

Which parameters are identified?
74 / 104



Identification of Simultaneous Equation Model: Method 1

I Like the other reduced form, we can identify δ∗q by regressing Qt

on Wt = (Xt ,Zdt ,Zst).

I That is:

E [W ′
tWt ]−1E [WtQt ] =E [W ′

tWt ]−1E [Wt(W ′
t δ
∗
q + ν∗q)]

=E [W ′
tWt ]−1E [WtW

′
t δ
∗
p] + E [W ′

tWt ]−1E [Wtν
∗
q)]

=δ∗q

75 / 104



Identification of Simultaneous Equation Model: Method 1

I 6 equations in 6 unknowns (αs , αd , βs , βd , γs , γs)

I That is: δ∗px

δ∗pd

δ∗ps

 =


βs−βd
αs−αd
γd

αs−αd
γs

αs−αd

 and

δ∗qx

δ∗qd

δ∗qs

 =


αsβs−αdβd
αs−αd
αsγd
αs−αd
−αdγs

αs−αd


I Can you identify αs? What implicit and explicit conditions do you

need? exclusion restriction ...

I What about αd ?
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Identification of Simultaneous Equation Model: Method 1

I Notice that
δ∗qd

δ∗pd

= αs

I So we can identify αs simply by taking the ratio of the reduced

form coefficients on Zdt

I Intuition:
dQs

t (Pt)

dZdt
=
∂dQs

t (Pt)

∂Pt

∂Pt

∂Zdt

I Exclusion Restriction: If Zdt affects Qt in any way other than

altering the price through the demand curve then this won’t work

I Notice that the same argument will work for αd with the Zst

coefficients.
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Identification of Simultaneous Equation Model: Method 1

I Zdt is called Instrument Variable.

I IV estimator is

α̂IV
s =

δ∗qd

δ∗pd

=
Reduced Form

First Stage

78 / 104



79 / 104



79 / 104



79 / 104



79 / 104



79 / 104



79 / 104



79 / 104



Identification of Simultaneous Equation Model: Method 2

Define

P∗t = Xtδ
∗
px + Z ′dtδ

∗
pd + Z ′stδ

∗
ps

so

Pt = P∗t + ν∗p

I This is identified since δ∗p = (δ∗px , δ
∗
pd , δ

∗
ps) is identified.

I Now notice that:

Qt =αsPt + X ′tβs + Z ′stγs + ut

=αs(P∗t + ν∗p) + X ′tβs + Z ′stγs + ut

=αsP
∗
t + X ′tβs + Z ′stγs + ut + αsν

∗
p

I Is αs now identified? Why?
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Identification of Simultaneous Equation Model: Method 2

One could get a consistent estimate of αs by regressing Qt on

W ∗
t = (P∗t ,Xt ,Zst). That is:

E [W ∗
t W

∗′
t ]−1E [W ∗′

t Pt ] =E [W ∗
t W

∗′
t ]−1E

[
W ∗

t

(
W ∗′

t

αs

βs

γs

+ ut + αsν
∗
pt

)]

=

αs

βs

γs

+ E [W ∗
t W

∗′
t ]−1E [W ∗

t (ut + αsν
∗
pt)]

=

αs

βs

γs


This is the so called two step IV estimation.
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Identification of Simultaneous Equation Model: Method 3

For any random variable Yt define

Ỹt = Yt − E (Yt |Xt ,Zst)

Since

Qt =αsPt + X ′tβs + Z ′stγs + ut

E (Qt |Xt ,Zst) =αsE (Pt |Xt ,Zst) + X ′tβs + Z ′stγs

then

Q̃t = αs P̃t + ut

Therefore

cov(Z̃dt , Q̃t) = αscov(Z̃dt , P̃t) + cov(Z̃dt , ut)
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Identification of Simultaneous Equation Model: Method 3

Exclusion Restriction:

cov(Z̃dt , ut) = 0

Then

αs =
cov(Z̃dt , Q̃t)

cov(Z̃dt , P̃t)
=

reduced form

first stage

Let’s think about the denominator (first stage), cov(Z̃dt , P̃t).

Pt =Xtδ
∗
px + Z ′dtδ

∗
pd + Z ′stδ

∗
ps + ν∗p

E (Pt |Xt ,Zst) =Xtδ
∗
px + E (Z ′dt |Xt ,Zst)δ∗pd + Z ′stδ

∗
ps + ν∗p

P̃t =Z̃dtδ
∗
pd + ν∗pt

Thus

cov(Z̃dt , P̃t) = δ∗pdvar(Z̃dt)

which will be non zero if δ∗pd 6= 0 and var(Z̃dt) 6= 0
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Identification of Simultaneous Equation Model: Method 3

One can see the importance of the Exclusion Restriction

assumption: cov(Z̃dt , ut) = 0

α̂IV
s =

cov(Z̃dt , Q̃t)

cov(Z̃dt , P̃t)

=αs +
cov(Z̃dt , ut)

cov(Z̃dt , P̃t)

Good IV: In order for the model to be consistent you need:

1. Exclusion Restriction: cov(Z̃dt , ut) = 0

2. First Stage: cov(Z̃dt , P̃t) 6= 0

But more generally for the asymptotic bias to be small you want

cov(Z̃dt , ut) to be small and |cov(Z̃dt , P̃t)| to be large.

85 / 104



Identification of Simultaneous Equation Model: Method 3

One can see the importance of the Exclusion Restriction

assumption: cov(Z̃dt , ut) = 0

α̂IV
s =

cov(Z̃dt , Q̃t)

cov(Z̃dt , P̃t)

=αs +
cov(Z̃dt , ut)

cov(Z̃dt , P̃t)

Good IV: In order for the model to be consistent you need:

1. Exclusion Restriction: cov(Z̃dt , ut) = 0

2. First Stage: cov(Z̃dt , P̃t) 6= 0

But more generally for the asymptotic bias to be small you want

cov(Z̃dt , ut) to be small and |cov(Z̃dt , P̃t)| to be large.

85 / 104



Identification of The Roy Model

I Let’s think about the Roy Model.

I This is discussed in Heckman and Honore (EMA, 1990)

I We will follow the discussion in French and Taber, Handbook of

Labor Economics, (2011)

I we will review identification only non-parametrically in this lecture

note.

I In problem set 5, you will study the identification parametrically

I While the model is about the simplest in the world, identification

is difficult and non-trivial.
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Why is nonparametric identification useful?

I Chris Taber: ”I always begin a research project by thinking about

nonparametric identification.”

I Literature on nonparametric identification not particularly highly

cited

I At the same time this literature has had a huge impact on

empirical work in practice.

I A Heckman two step model without an exclusion restriction is

often viewed as highly problematic these days because of

nonparametric identification

I It is also useful for telling you what questions the data can

possibly answer.

I If what you are interested is not nonparametrically identified, it is

not obvious you should proceed with what you are doing
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Non-Parametric Identification of The Roy Model

I Recall the Roy model

Wfi =gf (Xfi ,X0i ) + εfi

Whi =gh(Xhi ,X0i ) + εhi

I where the joint distribution of (εfi , εhi ) is G .

I in this case θ = (gf , gh,G )

I Of course, we don’t care about fishing and hunting! Depending on

the context, you can change these two.

I Let’s think of Fishing as jobs in the formal sector and Hunting as

jobs in informal sector.

I Another usage: Fishermen → Employed, Hunters → Unemployed
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Does G Matter?

I You may ask does G matter? YES!

I think about extereme cases:

1. var(εfi ) = 0 (Reservation Wage models)

2. perfect small positive correlation

3. perfect large positive correlation

4. perfect negative correlation
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Assumptions

I (εfi , εhi ) is independent of Xi = (X0i ,Xfi ,Xhi )

I Normalize E (εfi ) = 0

I Normalize the median of εfi − εhi to zero.

I Exclusion Restriction:

supp

(
gf (Xfi , x0), gh(Xhi , x0i )

)
= R2

for all x0 ∈ supp(X0i )

I Heckman and Honroe (1991) suggest a four step identification

procedure.

91 / 104



Step 1: Identification of Reduced Form Choice Model

I This part is well known in a number of papers (Manski and

Matzkin being the main contributors)

I We can write the model as

Pr(Fi = 1|Xi = x) = Pr(εhi − εfi ≤ gf (xf , x0)− gh(xh, x0))

=Gh−f (g∗(x))

I where Gh−f is the distribution function for εhi − εfi and

g∗(x) = gf (xf , x0)− gh(xh, x0)

I We can not separate g∗ from Gh−f , but we can identify this as a

function of x
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Step 1: Identification of Reduced Form Choice Model

I We also know that for any two values xa and xb, if

Pr(Fi = 1|Xi = xa) = Pr(Fi = 1|Xi = xb)

I Then

g∗(xa) = g∗(xb)
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Step 1: Parametric Identification

I Assume gf and gh are linear function of observables Xi ,

gf (Xfi ,X0i ) = X ′fiαf + X0iβf

gh(Xhi ,X0i ) = X ′hiαh + X0iβh

I Moreover assume that Gh−f ∼ N(0,Σ)

I Then what would step 1 look like?

I see problem set 5 for this parametric identification ...
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Step 2: Identification of the Wage Equation gf (Xi)
I Next consider identification of gf . This is basically the standard

selection problem:

1. You can observe wage offer for only employed workers

2. You observe only wage of immigrants

3. You only observe answers of respondents who choose to answer a

survey ...

4. In the Roy model, we can identify the distribution of Wfi

conditional on (Xi = x ,Fi = 1). In particular we can identify

E (Wi |Xi = x ,Fi = 1) = gf (xf , x0) + E (εhi |εfi − εhi < g∗(x))

I Heckman (1979) proposed a two step method to identify wages

when we have selection problem.

I His paper has 24,505 citation and buys him a Nobel prize in 2000.

I This step is essentially the second stage of a Heckman (1979) two

step.
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Step 2: Identification of the Wage Equation gf (Xi)

I We want to identify gf (xf , x0) but we can only identify

E (Wi |Xi = x ,Fi = 1) = gf (xf , x0) + E (εfi |εhi − εfi < g∗(x))

I Lets think about identifying gf up to location.

I That is, for any (xa
f , x

a
0 ) and (xb

f , x
b
0 ) we want to identify

gf (xa
f , x

a
0 )− gf (xb

f , x
b
0 )
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Exclusion Restriction

I An exclusion restriction is key,

I Take xb
h to be any number you want. From step 1 and from the

support assumption we know that we can identify a xa
h such that

Pr

(
Fi = 1|Xi = (xa

0 , x
a
h , x

a
f )

)
= Pr

(
Fi = 1|Xi = (xb

0 , x
b
h , x

b
f )

)
which means that

gf (xa
f , x

a
0 )− gh(xa

h , x
a
0 ) = gf (xb

f , x
b
0 )− gh(xb

h , x
b
0 )
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Exclusion Restriction

But then

E (Wi |Xi = xa,Fi = 1) =gf (xa
f , x

a
0 ) + E (εfi |εhi − εfi < g∗(xa))

E (Wi |Xi = xb,Fi = 1) =gf (xb
f , x

b
0 ) + E (εfi |εhi − εfi < g∗(xb))

Therefore:

E (Wi |Xi =xa,Fi = 1)− E (Wi |Xi = xb,Fi = 1)

=gf (xa
f , x

a
0 )− gf (xb

f , x
b
0 )

+ E (εfi |εhi − εfi < g∗(xa))− E (εfi |εhi − εfi < g∗(xb))

=gf (xa
f , x

a
0 )− gf (xb

f , x
b
0 )
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Step 2: Identification at Infinity

I What about the location?

I Notice that

lim
Pr(Fi=1|Xi=x)→1

E (Wi |Xi = x ,Fi = 1)

=gf (xf , x0) + lim
Pr(Fi=1|Xi=x)→1

E (εfi |εhi − εfi < g∗(x))

=gf (xf , x0) + lim
g∗(x)→∞

E (εfi |εhi − εfi < g∗(x))

=gf (xf , x0) + E (εfi )

=gf (xf , x0)

I Thus we can identify the location of the wage equation by

identification at infinity.
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Step 2: Identification at Infinity

I Identification at Infinity not only sufficient, but also necessary.

I The model is not identified without identification at infinity.

I To see why suppose that g∗(x) is bounded from above at gu such

that if εhi − εfi > gu then Fi = 0.

I Thus the data is completely uninformative about

E (εfi |εhi − εfi > gu)

I so the model is not identified.

I Parametric assumptions on the distribution of the error term is an

alternative.
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Who cares about Location?

I Without our intercept we know something about wage variation

within fishing

I However we can not compare the level of fishing to the level of

hunting

I If our policy involves moving people from one to the other we

need the intercepts
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Step 3: Identification of gh
I What will be crucial is the other exclusion restriction (i.e. Xfi )

I For any (xh, x0) we want to find an xf so that

Pr(Fi = 1|Xi = (xf , xh, x0)) = 0.5

I this means that

0.5 = Pr

(
εhi − εfi ≤ gf (xf , x0)− gh(xh, x0)

)

I but the fact that εhi − εfi has median zero, implies that:

gh(xh, x0) = gf (xf , x0)

I Since gf is identified, clearly gh is identified from this expression.
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Step 4: Identification of G

I Relatively straight forward given everything else

I To identify the joint distribution of (εfi , εhi ) from the data one can

observe Pr(Fi = 1,Wi < s|Xi = (xf , xh, x0)) which is :

= Pr

(
gf (xf , x0) + εfi < s, gh(xh, x0) + εhi < gf (xf , x0) + εfi

)
= Pr

(
εfi < s − gf (xf , x0), εhi − εfi < gf (xf , x0)− gh(xh, x0)

)
I which is the cumulative distribution function of (εfi , εhi − εfi )

evaluated at the point(
gf (xf , x0)− gh(xh, x0), s − gf (xf , x0)

)
I Thus we know the joint distribution of (εfi , εhi − εfi )
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