1. Given a random sample \{Y_1, \ldots, Y_n\}, show that \(S^2 \) and \(\tilde{S}^2 \) are unbiased estimators for the population variance \(\sigma^2 \).

\[
S^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \mu)^2, \quad \tilde{S}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2
\]

Note that \(\mu = E(Y) \) and \(\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \).

2. At a party, \(n \) men take off their hats. The hats are then mixed up and each man randomly selects one. We say that a match occurs if a man selects his own hat. What is the probability of no matches? What is the probability of exactly \(k \) matches?

3. If \(X \) and \(Y \) are identically distributed, not necessarily independent, show that \(\text{Cov}(X + Y, X - Y) = 0 \)

4. Let \(X_1, X_2, \ldots, X_n \) denote a sample from a population whose mean value \(\theta \) is unknown. Argue that among all unbiased estimators of \(\theta \) of the form \(\sum_{i=1}^{n} \lambda_i X_i \) with \(\sum_{i=1}^{n} \lambda_i = 1 \) the one with minimum mean square error has \(\lambda_i = \frac{1}{n} \), \(i=1,\ldots,n \).

5. Let \(X_1, X_2, \ldots, X_n \) be i.i.d Bernoulli random variables, with unknown parameter \(p \in (0,1) \). The aim of this exercise is to estimate the common variance of the \(X_i \)'s.

 (a) Show that \(\text{var}(X_i) = p.(1 - p) \)

 (b) Compute the bias of this estimator.

 (c) Find an unbiased estimator of \(p(1 - p) \).

6. Assume \(X \) and \(Y \) follow a joint normal distribution:

\[
f_{XY}(x, y) = \frac{1}{2\pi \sqrt{\det(\Sigma)}} \exp \left[-\frac{1}{2} \left(\begin{array}{c} x - \mu_x \\ y - \mu_y \end{array} \right) \Sigma^{-1} \left(\begin{array}{c} x - \mu_x \\ y - \mu_y \end{array} \right) \right]
\]
where \(\Sigma = \begin{pmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{pmatrix} \) is the variance covariance matrix of the distribution, \(\mu_x \) and \(\mu_y \) are mean of marginal distributions of \(X \) and \(Y \) respectively.

(a) What does the parameter \(\rho \) show? What values do you expect this to take?
(b) Prove that if \(\text{cov}(X,Y) = 0 \) then \(X \) and \(Y \) are independent.
(c) Find \(f_{Y \mid X}(y \mid x) \).
(d) What is \(E(Y \mid X = x) \)? If we are only interested in finding \(E(Y \mid X) \) how many parameters do we need to estimate?