Motivation

• How should we model individual decision making?
• Agents have preferences over different alternatives.
 ■ What do agents like most?
• The feasible set of alternatives determines possible choices.
 ■ What can agents choose?
 ■ The institutional setting shapes the feasible set.
Contents

- Consumer preferences and their properties
- Utility function
- Existence of a utility function
- Utility maximization \rightarrow demand functions \rightarrow indirect utility
 - When does demand satisfy HD0 and Walras’ law?
- Expenditure minimization \rightarrow demand functions \rightarrow expenditure function
- Relation between the two problems
- Welfare measurement
Outline

Introduction

Basic elements

Utility maximization problem

Expenditure Minimization Problem

Comparative Statics

UMP vs. EMP

Welfare measurement
Consumption Set – Feasibility

- Consumption set (X): a subset of the commodity space a consumer could possibly consume given *physical constraints* from the environment.
 - consumption of non-negative values of food and water
 - consumption of leisure and food
 - survival needs
- $X = \mathbb{R}_+^L = \{\mathbf{x} \in \mathbb{R}^L : x_\ell \geq 0 \text{ for } \ell = 1, \ldots, L\}$
 - convex set: if $\mathbf{x}, \mathbf{x}' \in X$ then $\mathbf{x}'' = \alpha \mathbf{x} + (1 - \alpha) \mathbf{x}' \in X$ for all $\alpha \in [0, 1]$
- Is a consumption set with integer values for commodities convex?
Preference Relations

- X: Consumption set (set of consumption bundles)
- Preference relation (\succeq) denotes the comparison of two bundles $x, y \in X$
 - Read $x \succeq y$ as “x is at least as good as y”
- Strict preference relation (\succ) is defined as
 $x \succ y \iff x \succeq y$ but not $y \succeq x$
 - Read $x \succ y$ as “x is strictly preferred to y”
- Indifference relation (\sim) is defined as
 $x \sim y \iff x \succeq y$ and $y \succeq x$
Indifference curves

- For any $y \in X$, define $IC(y) = \{x \in X \mid x \sim y\}$
- Often a very useful tool for graphical representation of preferences.
- Not that useful with more than two dimensions.
- Define, upper contour curve

$$UC(y) = \{x \in X \mid x \succsim y\}$$

- Similarly define lower contour curve

$$LC(y) = \{x \in X \mid y \succsim x\}$$
Rationality

• \simeq is rational if

1. Complete: allows comparison of ALL alternatives
 for all $x, y \in X$ we have either $x \simeq y$ or $y \simeq x$ (or both).
2. Transitive: no cycles
 for all $x, y, z \in X$, if $x \simeq y$ and $y \simeq z$, then $x \simeq z$.

• Both are strong assumptions
 - Is completeness the same as indifference?
 - Does transitivity feel natural?
Desirability

- Monotone (M): If $x, y \in X$ and $y \gg x$ implies $y \succ x$.
 - More of everything is better.

- Strongly monotone (SM): If $y \geq x$ and $y \neq x$ implies $y \succ x$.
 - More of at least one thing is better.

- Locally nonsatiated (LNS): If for $\forall x \in X$ and $\forall \epsilon > 0$, there is $y \in X$ such that $\| y - x \| \leq \epsilon$ and $y \succ x$.
 - In all possible neighborhoods of all bundles there exists a better option!

- Strong monotonicity \Rightarrow Monotonicity \Rightarrow Local Nonsatiation
 - Proof exercise.
Illustration of desirability

- Graphs!
- Does LNS imply more is better?
- What types of IC are not compatible with LNS?
 - thick ICs, all commodities are bads!
Convexity

- Convex: If $\forall x \in X$, $UC(x)$ is a convex set.
 - OR If $y \succeq x$ and $z \succeq x$, then $\alpha y + (1 - \alpha)z \succeq x$ for any $\alpha \in [0, 1]$.
 - Implies diminishing marginal rate of substitution.
 - Agents like diversification. E.g. If $x \sim y$ then $\frac{1}{2}x + \frac{1}{2}y \succeq x$ and $\frac{1}{2}x + \frac{1}{2}y \succeq y$.

- Strictly convex: If $y \succeq x$, $z \succeq x$, and $y \neq z$ then $\alpha y + (1 - \alpha)z \succ x$ for any $\alpha \in (0, 1)$.
 - If $x \sim y$ then which of these is right? a) $\alpha y + (1 - \alpha)x \succ x$
 b) $\alpha y + (1 - \alpha)x \sim x$

- Can you think of a situation where diversification is NOT preferred?
Continuity

- Continuous: if $UC(x)$ and $LC(x)$ are both closed sets for all $x \in X$.

 - What is a closed set?
 - What type of behavior is ruled out when preferences are continuous?

- Example: Lexicographic preferences
Homotheticity

- Definition: A monotone \(\succeq \) on \(X = \mathbb{R}_+^L \) is homothetic if all indifference sets are related by proportional expansion along rays.
- OR if \(x \sim y \) then \(\alpha x \sim \alpha y \) for any \(\alpha \geq 0 \).
- Think about the shape of ICs.
 - What types of preferences are ruled out when we assume homotheticity?
Quasilinearity

- Definition: \succsim on $X = (-\infty, \infty) \times \mathbb{R}_{+}^{L-1}$ is quasilinear w.r.t. commodity 1 (the numeraire) if
 - Indifference curves are parallel shifts of each other along the axis of commodity 1.
 - OR if $x \sim y$ then $(x + \alpha e_1) \sim (y + \alpha e_1)$ for $e_1 = (1, 0, \ldots, 0)$ and any $\alpha \in \mathbb{R}$.
 - Good 1 is desirable: $x + \alpha e_1 \succ x$ for all x and $\alpha > 0$.

- Shape of ICs.
- We can deduce the entire preference relation from one IC if \succsim is quasilinear or homothetic.
Utility Function

- Utility function: $u(x)$ assigns a numerical value to each element of X ($u : X \rightarrow \mathbb{R}$)
- $u(x)$ represents the preference relation \succeq if for all $x, y \in X$,

$$x \succeq y \iff u(x) \geq u(y)$$

- Assume, there is a $u(x)$ that represents \succeq, could you find another utility function that does the same?
Could We Express \succeq by $u(x)$?

- Much easier to work with a utility function than preference relations.
- Rationality, monotonicity, and convexity are not sufficient for existence of $u(x)$.
- Example: Lexicographic preference relation.
 - Take $X = \mathbb{R}^2_+$ and define $x \succ y$ if “$x_1 > y_1$” or “$x_1 = y_1$ and $x_2 > y_2$”
 - This preference relation is rational, strongly monotone, and strictly convex.
 - No utility function represents this!
Existence of $u(x)$

- **Proposition**: If \succeq satisfies *rationality* and *continuity* then there exists a *continuous* utility function $u(x)$ that represents \succeq.

 - We prove an easier version of the proposition with the assumption of strong monotonicity. The proof is given in p. 97 of Varian.
Notes on $u(x)$

- $u(\cdot)$ is not unique; any strictly increasing transformation will do.
- Not all $u(\cdot)$ representing a continuous \succsim are continuous. Why?
- We usually assume $u(\cdot)$ to be differentiable. Is continuity of \succsim enough for this. Example?
 - Sometimes, assume $u(\cdot)$ is twice continuously differentiable! $IC(x)$ should be nice and smooth!
IC(\(\mathbf{x} \)) and Contours of \(u(\mathbf{x}) \)

- With \(u(\mathbf{x}) \) we can derive the \(IC(\mathbf{x}) \) easily by plotting the contours (level curves) of \(u(\mathbf{x}) \)
- Example: \(u(x_1, x_2) = Ax_1^\alpha x_2^{1-\alpha} \)
 - Level curves:

 \[
 \bar{u} = Ax_1^\alpha x_2^{1-\alpha}
 \]

 \[
 \Rightarrow x_2 = \left(\frac{\bar{u}}{Ax_1^\alpha} \right)^{\frac{1}{1-\alpha}}
 \]

 \[
 \Rightarrow x_2 = cx_1^{-\frac{\alpha}{1-\alpha}}
 \]

 - This gives the loci of all points that deliver \(\bar{u} \).
Properties of $\succsim \Rightarrow$ Properties of $u(x)$

- Monotonicity $\Rightarrow u(x)$ is increasing; i.e. If $x \succsim y$ then $u(x) > u(y)$.
- (Strict) convexity of \succsim $\Rightarrow u(x)$ is (strictly) quasiconcave; i.e. $\forall x, y \in X$ and any $\alpha \in [0, 1]$ we have $u(\alpha x + (1 - \alpha)y) \geq \min\{u(x), u(y)\}$
- A continuous \succsim is homothetic iff it admits a HD1 $u(x)$.
- A continuous \succsim on $(-\infty, \infty) \times \mathbb{R}_+^{L-1}$ is quasilinear w.r.t. the first commodity iff it admits $u(x) = x_1 + \phi(x_2, \ldots, x_L)$.
- Note: monotonicity and convexity are ordinal properties while homotheticity and quasilinearity are cardinal.
Affordability

- Consumption limited to bundles that the consumer can afford.
 - depends on prices and wealth (income)

- Assumptions
 - Principle of completeness: All commodities are traded at publicly known prices.
 - Price vector
 \[p = \begin{bmatrix} p_1 \\ \vdots \\ p_L \end{bmatrix} \in \mathbb{R}^L \]
 - \(p \gg 0 \); interpretation of negative \(p_\ell \)?
 - Price-taking: prices are beyond the influence of the consumer.
Competitive Budget Sets

- Competitive (Walrasian) budget set:
 \[B_{p,w} = \{ x \in \mathbb{R}_+^L : p \cdot x \leq w \} \]
 - \(\cdot \) is the inner product of two vectors OR a short hand notation for \(\sum_{\ell=1}^{L} p_\ell x_\ell \)
 - Restate consumer’s problem: choose a consumption bundle from \(B_{p,w} \)
 - Is this convex?

- Upper boundary of budget set OR budget hyperplane (line)
 \[\{ x \in \mathbb{R}^L : p \cdot x = w \} \]

- Graphical representation when \(L = 2 \).
 - slope of the budget line: \(-(p_1/p_2) \) reflects relative terms of exchange between commodities
 - reduction/increase in one/both prices
Outline

Introduction

Basic elements

Utility maximization problem

Expenditure Minimization Problem

Comparative Statics

UMP vs. EMP

Welfare measurement
Utility Maximization Problem

- Assume \succsim is rational, continuous, and LNS. Take the continuous $u(x)$ representing this preference relation.
- Consumer’s decision problem

$$\max_{x \geq 0} u(x)$$

$$\text{s.t.} \quad p \cdot x \leq w$$

is now a utility maximization problem (UMP) $[p \gg 0, \ w > 0, \ X = \mathbb{R}^L_+]$.

- Pick the consumption bundle from the Walrasian budget set that gives the highest level of utility!
- Walrasian demand: optimal consumption bundle, solution to UMP
- Indirect utility: maximal utility value
Existence of Solution

- If \(p \gg 0 \) and \(u(x) \) is continuous, then UMP has a solution.
- Proof: If \(p \gg 0 \) then \(B_{p,w} = \{ x \in \mathbb{R}_+^L : p \cdot x \leq w \} \) is a compact set [is bounded and closed].
 A famous result says that a continuous function always has a max (and min) on a compact set.
- If one price is zero (e.g. \(p_\ell = 0 \)) can we still make the argument above?
How to Find the Solution?

- Kuhn-Tucker conditions
 - often simplified by utilizing features of the utility functions
- Graphical solution
- Graphical solution may not be enough on its own, but is extremely helpful in delivering the intuition.
Walrasian Demand

• Demand is

\[x(p, w) = \arg\max_{x \geq 0} u(x) \]
\[\text{s.t. } p \cdot x \leq w \]

• This could be multi/single-valued.

• Basically, find the points that fall on the highest IC that has an intersection with \(B_{p,w} \).
Properties of Demand

- Suppose \(u(x) \) is a continuous utility function representing \(\succsim \) with LNS and \(X = \mathbb{R}_+^L \), then the demand correspondence has the following properties:

1. HD0 in \((p, w)\), i.e. \(x(\alpha p, \alpha w) = x(p, w) \) for any \(p, w \), and \(\alpha > 0 \).
2. Walras’ law: \(p \cdot x = w \) for all \(x \in x(p, w) \).
3. Convexity: if \(\succsim \) convex \((u \text{ quasiconcave})\), then \(x(p, w) \) is a convex set.
4. Uniqueness: if \(\succsim \) strictly convex \((u \text{ strictly quasiconcave})\), then \(x(p, w) \) is single-valued.
5. Continuous in \((p, w)\).
Kuhn-Tucker Necessary Conditions

- If $u(x)$ continuously differentiable, then use calculus to characterize the solution.
- Kuhn-Tucker (KT) necessary conditions: If x^* is a solution to UMP, then it satisfies the following properties
 1. $\exists \lambda \geq 0$ such that for all $\ell = 1, \ldots, L$:
 $$\frac{\partial u(x^*)}{\partial x_\ell} \leq \lambda p_\ell, \text{ with equality if } x^*_\ell > 0$$
 2. Complementary slackness: $\lambda (p_1 x^*_1 + \cdots + p_k x^*_k - w) = 0$
 With LNS this condition is simplified to $p \cdot x^* = w$
Sufficient Conditions

- When are the necessary conditions also sufficient?
 - When can we say that an x^* that satisfies KT necessary conditions is a maximizer?

- The second-order condition can be written as:

$$h^t D^2 u(x^*) h \leq 0 \quad \text{for all } h \text{ such that } p \cdot h = 0$$

- This requires the Hessian matrix to be NSD for all h orthogonal to the price vector.
What Convexity Buys!

- Theorem: If $u(x)$ is quasiconcave and the constraint set is convex, then the KT necessary conditions are sufficient.

- Notes:
 - \succeq convex $\Rightarrow u$ quasiconcave.
 - $\{(x_1, \ldots, x_L) \geq 0 | p_1 x_1 + \cdots + p_L x_L \leq w\}$ is a convex set.
 - With strict quasiconcavity we can show the solution is unique.
What LNS Buys!

- With LNS, the budget constraint has to bind, i.e. \(\mathbf{p} \cdot \mathbf{x} = w \), therefore (with caution) you can use Lagrangian instead of KT conditions.

- Notice we have assumed \(u \) is continuously differentiable. You need to check non-differentiable points separately.
 - The safest way is to plug in the solutions of Lagrangian/KT conditions together with boundary and non-differentiable points and see which one delivers the largest value.
Interior Solution

- Interior solution is when \(x^* \gg 0 \).
- At any interior solution of UMP we have \(\frac{\partial u(x^*)}{\partial x_\ell} = \lambda p_\ell \)
 - i.e. gradient of \(u \) at \(x^* \) is in the same direction as the price vector (\(\lambda > 0 \)).
 - Graphical illustration?

- Consider the F.O.C.s for commodities \(\ell \) and \(k \) and divide them

\[
MRS_{\ell k}(x^*) \equiv \frac{\frac{\partial u(x^*)}{\partial x_\ell}}{\frac{\partial u(x^*)}{\partial x_k}} = \frac{p_\ell}{p_k}
\]

- At the interior solution: marginal rate of substitution of good \(\ell \) for \(k \) (willingness) equals price ratio (affordability).

- We can derive the above condition using the perturbation argument: say for an interior solution \(MRS_{\ell k}(x^*) > \frac{p_\ell}{p_k} \) then exchange \(x_\ell \) for \(x_k \) to reach higher utility...
Marginal Rate of Substitution

- MRS shows the exchanges that leave the consumer on the same indifference curve.
- In fact from its definition

$$MRS_{\ell k}(x^*) = \frac{MU_\ell(x^*)}{MU_k(x^*)} = \frac{\partial u(x^*)}{\partial x_\ell} \frac{\partial u(x^*)}{\partial x_k}$$

- Taking dx_ℓ units of good ℓ reduces utility by $MU_\ell(x^*)dx_\ell$ giving $dx_\ell = \frac{MU_\ell(x^*)dx_\ell}{MU_k(x^*)} = MRS_{\ell k}(x^*)dx_\ell$ will exactly offset this and leaves the consumer on the same indifference curve.
- Convexity results in a diminishing MRS.
- This is different from decreasing MU_ℓ or MU_k.
Corner Solution

- This is in contrast to an interior solution, i.e. at least one of \(x_\ell^* = 0 \).
- KT necessary conditions state that if \(x_\ell^* = 0 \) then
 \[
 \frac{\partial u(x^*)}{\partial x_\ell} \leq \lambda p_\ell.
 \]
- \(MRS_{\ell k}(x^*) \) is not necessarily equal to the price ratio \(\frac{p_\ell}{p_k} \).
- Notice Walras law could still hold at the corner solution.
Example (Cobb-Douglas)

- Cobb-Douglas utility:

\[
\max_{(x_1, x_2) \geq 0} u(x_1, x_2) = x_1^\alpha x_2^{1-\alpha}
\]

\[
s.t. \quad p_1 x_1 + p_2 x_2 \leq w
\]

- Solving the UMP yields

\[
x_1 = \alpha \frac{w}{p_1}
\]

\[
x_2 = (1 - \alpha) \frac{w}{p_2}
\]

- Notice KT necessary conditions are sufficient because
 - \(u \) is quasiconcave since \(UC(x) \) is a convex set for all \(x \in \mathbb{R}^2_+ \).
 - The constraint set is convex.
Example (Linear Utility)

- Consider

\[
\max_{(x_1, x_2) \geq 0} u(x_1, x_2) = x_1 + x_2 \\
\text{s.t. } p_1 x_1 + p_2 x_2 \leq w
\]

- \(u\) is quasiconcave (and quasiconvex) and we have the normal BC, therefore KT necessary conditions are sufficient.

- \(u\) is not strictly quasiconcave \(\Rightarrow\) there might be several maximizers.

- Do we have an interior or a corner solution?
 - Graphical illustration helps a lot.
 - Could follow KT.
Example (Quasilinear Utility)

- Consider

$$\begin{align*}
\max_{(x_1, x_2) \geq 0} & \quad u(x_1, x_2) = x_1 + \sqrt{x_2} \\
\text{s.t.} & \quad p_1 x_1 + p_2 x_2 \leq w
\end{align*}$$

- u is strictly quasiconcave and constraint set is convex \Rightarrow KT necessary conditions are sufficient.

 - Maximizer is unique but is it at the corner or interior of budget line?
Interpretation of λ

- λ the Lagrange multiplier gives the marginal (shadow) value of relaxing the constraint in UMP

$$u(x(p, w)) = \max_{x \geq 0} u(x) \quad \text{s.t.} \quad p \cdot x \leq w$$

- Relaxing constraint \rightarrow increase w

- Therefore, λ captures the marginal utility value of increasing wealth (income)!

- Formally

$$\frac{\partial u(x(p, w))}{\partial w} = \nabla u(x) \cdot D_w x(p, w)$$

$$= \lambda p \cdot D_w x(p, w)$$

$$= 1 \text{ by Walras law}$$

$$= \lambda$$
Indirect Utility

- Indirect utility function \(v(p, w) \) is the value of the utility at the optimal consumption bundle

\[
v(p, w) = u(x(p, w)) = \max_{x \geq 0} u(x) \quad \text{s.t.} \quad p \cdot x \leq w
\]

- Obviously this depends on the particular \(u(x) \) chosen (in contrast to \(x(p, w) \)).
Examples

- Cob-Douglas utility gave \(x_1 = \alpha \frac{w}{p_1} \) and \(x_2 = (1 - \alpha) \frac{w}{p_2} \). Insert these into the original utility function to get

 ■ the indirect utility:

 \[
 v(p, w) = \left(\frac{\alpha w}{p_1} \right)^{\alpha} \left(\frac{(1-\alpha)w}{p_2} \right)^{1-\alpha} = \frac{\alpha^\alpha (1-\alpha)^{1-\alpha}}{p_1^\alpha p_2^{1-\alpha}} w
 \]

 ■ using \(u = \alpha \ln x_1 + (1 - \alpha) \ln x_2 \) gives exactly the same demand functions but a different indirect utility function.

- Linear utility gives \(v(p, w) = x_1(p, w) + x_2(p, w) \)
• Suppose $u(x)$ is a continuous utility function representing \succeq with LNS and $X = \mathbb{R}_+^L$, then $v(p, w)$ satisfies

1. HD0 in (p, w), i.e. $v(\alpha p, \alpha w) = v(p, w)$ for any p, w, and $\alpha > 0$.
2. Strictly increasing in w and non-increasing in p_ℓ for any ℓ.
3. Quasiconvex: i.e. $LC(\bar{v}) = \{(p, w) : v(p, w) \leq \bar{v}\}$ is convex for any \bar{v}.
4. Continuous in (p, w).
5. Roy’s Identity:

$$x_\ell(p, w) = - \frac{\partial v/\partial p_\ell}{\partial v/\partial w}$$

• Proofs covered (except for continuity)!
Outline

Introduction

Basic elements

Utility maximization problem

Expenditure Minimization Problem

Comparative Statics

UMP vs. EMP

Welfare measurement
Expenditure Minimization Problem (EMP)

- Find the minimal level of wealth required to achieve a given level of utility:

\[
\min_{x \geq 0} \quad p \cdot x \\
\text{s.t.} \quad u(x) \geq u
\]

is the EMP [assumptions: \(p \gg 0 \), \(u > u(0) \), \(X = \mathbb{R}^L_+ \)].

- In comparison to UMP: roles of constraint and objective function are reversed.
 - Under LNS, expenditure function is the inverse of the indirect utility function!

- Both UMP and EMP are considering efficient use of consumer’s purchasing power.

- Expenditure minimizing commodity vectors: \(h(p, u) \)
 - Hicksian (compensated) demand

- Minimal value: \(e(p, u) \) expenditure function
Solution to EMP

\[
\begin{align*}
\min_{\mathbf{x} \geq 0} & \quad \mathbf{p} \cdot \mathbf{x} \\
\text{s.t.} & \quad u(\mathbf{x}) \geq u
\end{align*}
\]

- KT F.O.C. \(\exists \lambda \geq 0 \)

\[
\mathbf{p} \geq \lambda \nabla u(\mathbf{x}^*) \quad \text{with equality in } l\text{th element if } x^{*}_l > 0
\]

Or

\[
p_l \geq \lambda \frac{\partial u(\mathbf{x}^*)}{\partial x^*_l} \quad \text{with equality if } x^{*}_l > 0
\]

- The other KT F.O.C. is

\[
\lambda \cdot [u(\mathbf{x}^*) - u] = 0
\]

which means either \(u(\mathbf{x}^*) = u \) or \(\lambda = 0 \).
Expenditure Function

\[e(p, u) = \min_{x \geq 0} p \cdot x \]
\[\text{s.t. } u(x) \geq u \]

- Suppose \(u \) is continuous and represents an LNS preference on \(X = R^L_+ \) and \(p \gg 0 \), then \(e(p, u) \) is
 1. HD1 in \(p \).
 2. strictly increasing in \(u \) and non-decreasing in \(p \)
 3. concave in \(p \)
 4. continuous in \(p \) and \(u \)

- Proofs: we cover 1 and 3; 2 is left as exercise. 4 is not covered.
Concavity of Expenditure Function

- claim: \(e(p'', u) \geq \alpha e(p, u) + (1 - \alpha)e(p', u) \) where \(p'' = \alpha p + (1 - \alpha)p' \)
- Denote the solution to EMP at different price vectors as \(x, x', x'' \)

\[
e(p'', u) = p'' \cdot x'' = \alpha p \cdot x'' + (1 - \alpha)p' \cdot x''
\]

But since \(u(x'') \geq u \) and \(e(p, u) \) is the minimum expenditure for buying \(u \) we have \(p \cdot x'' \geq e(p, u) \) and \(p' \cdot x'' \geq e(p', u) \). Using this in the above expression

\[
e(p'', u) \geq \alpha e(p, u) + (1 - \alpha)e(p', u)
\]

- Intuition: consider \(x \in h(p, u) \),
 - when \(p \) is changed but \(x \) is fixed: expenditure is \(p \cdot x \)
 - when \(p \) is changed and \(x \) is re-optimized: \(e(p, u) \leq p \cdot x \)
Hicksian Demand Properties

- Suppose u is continuous representing an LNS preference on $X = \mathbb{R}^L_+$ and $p \gg 0$, then $h(p, u)$ is
 1. HD0 in p
 2. No excess utility: $\forall x \in h(p, u)$ then $u(x) = u$
 3. If \succ convex, then $h(p, u)$ is a convex set.
 4. If \succ strictly convex, then $h(p, u)$ is a singleton.
 5. Shephard’s lemma: \(\frac{\partial e(p, u)}{\partial p_\ell} = h_\ell(p, u) \)

- Proofs covered!
Hicksian (Compensated) Demand

- Why is this called compensated demand?
- \(h(p, u) \) gives the level of demand that would arise if wealth is constantly adjusted to keep the utility at \(u \)
- Hicksian wealth compensation
- Graphical representation
Example - Quasilinear Utility

- Consider \(u(x_1, x_2) = x_1 + \ln x_2 \), the EMP associated with this

\[
\min_{x_1, x_2} \quad p_1 x_1 + p_2 x_2 \\
\text{s.t.} \quad x_1 + \ln x_2 \geq u
\]

- First, notice both the objective function and \(u(\cdot) \) are increasing, therefore the constraint must satisfy with equality.

- F.O.C.

\[
p_1 \geq \lambda \cdot 1 \text{ with equality if } x_1^* > 0
\]

\[
p_2 \geq \lambda \cdot \frac{1}{x_2} \text{ with equality if } x_2^* > 0
\]
Example – Solution

1. If $x_1^* > 0$ and $x_2^* > 0$: $\lambda = p_1$ and $x_2^* = \frac{p_1}{p_2}$, this gives

 $x_1 = u - \ln \frac{p_1}{p_2}$ [parametric condition: $u - \ln \frac{p_1}{p_2} > 0$]

2. If $x_1^* = 0$ and $x_2^* > 0$: $x_2^* = e^u$ and $\lambda = p_2 e^u$ [parametric
 condition: $\frac{p_1}{p_2} \geq e^u$]

3. If $x_1^* \geq 0$ and $x_2^* = 0$: constraint non-differentiable. But since
 $\ln x_2 \to -\infty$ as $x_2 \to 0$ the utility constraint cannot
 hold in this case.

 • Notice cases 1 and 2 cover the whole parameter space, i.e. all
 possible values for p_1, p_2, and u. In summary

 \[h(p_1, p_2, u) = (h_1, h_2) = \begin{cases}
 (0, e^u) & \text{if } \frac{p_1}{p_2} \geq e^u \\
 (u - \ln \frac{p_1}{p_2}, \frac{p_1}{p_2}) & \text{if } \frac{p_1}{p_2} < e^u
 \end{cases} \]

 \[e(p, u) = p \cdot h(p, u) = \begin{cases}
 p_2 e^u & \text{if } \frac{p_1}{p_2} \geq e^u \\
 p_1 \left(u - \ln \frac{p_1}{p_2} + 1\right) & \text{if } \frac{p_1}{p_2} < e^u
 \end{cases} \]
Suppose \(u(x) \) continuous represents an LNS \(\succeq \) and \(h(p, u) \) is the Hicksian demand function (single-valued) for all \(p \gg 0 \). Then for all \(p' \) and \(p \)

\[
(p' - p) \cdot [h(p', u) - h(p, u)] \leq 0
\]

Proof: From definition of \(h(p, u) \) we have

\[
\begin{align*}
p' \cdot h(p', u) & \leq p' \cdot h(p, u) \\
p \cdot h(p, u) & \leq p \cdot h(p', u)
\end{align*}
\]

add up to get the result.

Note: \(x(p, w) \) doesn’t show this property. Why?
Outline

Introduction

Basic elements

Utility maximization problem

Expenditure Minimization Problem

Comparative Statics

UMP vs. EMP

Welfare measurement
Comparative Statics

- We try to examine how the consumer’s demand changes as prices and wealth change.
 - You could also look at changes in expenditure and indirect utility.
- If functions are differentiable, then one can always use derivatives w.r.t. to prices and wealth to get the comparative statics.
 - Graphical representation is, however, extremely useful.
Wealth Expansion Path

- Wealth expansion path (WEP): how does the bundle demanded change as the consumer gets more wealth?
 - This is drawn in the commodity space.
 - Sometimes this is referred to as income expansion path (IEP)
- $\frac{\partial x_\ell(p,w)}{\partial w}$: wealth effect for commodity ℓ
- Engel function: $x(\bar{p}, w)$
 - WEP is the contour curves of the Engel function
Normal vs. inferior goods

- Normal good: \(\frac{\partial x_\ell(p, w)}{\partial w} \geq 0 \)
 - Luxury: \(\epsilon_{\ell, w} = \frac{\partial x_\ell(p, w)}{\partial w} \times \frac{w}{x_\ell(p, w)} > 1 \)
- Inferior good: \(\frac{\partial x_\ell(p, w)}{\partial w} < 0 \)
Offer curve

- Offer curve for good 1: Fix wealth and the price of other goods, how does demanded bundle vary with p_1?
- Two possibilities
 - $p_1 \downarrow \Rightarrow x_1 \uparrow$ vs. $p_1 \downarrow \Rightarrow x_1 \downarrow$ (Giffen)
Example: excise vs income tax

- Tax a consumer to obtain a certain amount of revenue.
 - Consumer’s initial budget constraint: \(p_1 x_1 + p_2 x_2 = w \)
- with sales tax on good 1: \((p_1 + t)x_1 + p_2 x_2 = w \)
 \[\Rightarrow \text{after-tax consumption: } (x_1^*, x_2^*), \text{ revenue collected: } tx_1^*. \]
- With income (wealth) tax: \(p_1 x_1 + p_2 x_2 = w - tx_1^*. \)
- Which type of tax leads to a higher utility for the consumer?
Outline

Introduction

Basic elements

Utility maximization problem

Expenditure Minimization Problem

Comparative Statics

UMP vs. EMP

Welfare measurement
Overview

• We start by relating the solutions to EMP and UMP.
• Then we explore two relationships
 1. Hicksian demand and expenditure function (Shephard’s lemma and some additional results)
 2. Hicksian and Walrasian demand functions (Slutsky equation)
• Previously we discussed Roy’s identity that establishes the link between demand and indirect utility
• When required we rule out multi-valued correspondences.
EMP vs. UMP

• Suppose $u(\cdot)$ is continuous representing locally non-satiated preferences on $X = \mathbb{R}^L_+$ and $p \gg 0$, then

1. If x^* is a solution to UMP when $w > 0$, then x^* is a solution to EMP when $u = u(x^*)$, and $e(p, u) = w$.
2. If x^* is a solution to EMP when $u > u(0)$, then x^* is a solution to UMP when $w = p \cdot x^*$, and $v(p, w) = u(x^*)$.

• This suggests

- $e(p, v(p, w)) = w$ and $v(p, e(p, u)) = u$
- $h(p, u) = x(p, e(p, u))$ and $x(p, w) = h(p, v(p, w))$
Hicksian Demand and Expenditure Function

- Shephard’s lemma $h(p, u) = D_p e(p, u)$
- Furthermore:
 - $D_p h(p, u) = D_p^2 e(p, u)$
 - $D_p h(p, u)$ is a symmetric and NSD matrix.
 - $D_p h(p, u)p = 0$
- Notes, NSD of $D_p h$ follows from concavity of $e(p, u)$ in prices.
- Last property is a result of HD0 of $h(p, u)$ in prices.
- Symmetry is linked to transitivity (or no cycle in preferences)
Complements and Substitutes

- Goods ℓ and k are
 - complements iff $\frac{\partial h_\ell(p, u)}{\partial p_k} \leq 0$
 - an increase in p_k reduces compensated demand for goods ℓ
 i.e. they are consumed together!
 - substitutes iff $\frac{\partial h_\ell(p, u)}{\partial p_k} \geq 0$
 - an increase in p_k increases compensated demand for good ℓ
 i.e. one good is replacing the other!

- Notes:
 - These definitions are local at (p, u).
 - Symmetry of $D_p h(p, u)$ is important for this definition to make any sense!
 - Since $D_p h(p, u)p = 0$ and $\frac{\partial h_\ell}{\partial p_\ell} \leq 0$
 $\exists k \neq \ell$ s.th. $\frac{\partial h_\ell}{\partial p_k} \geq 0$, each good must have at least one substitute!
 - Using $x(p, w)$ we can define *gross* complements and substitutes.
Example

- Cobb-Douglas utility:
 \[h(p, u) = \left(\left(\frac{\alpha p_2}{(1-\alpha)p_1} \right)^{1-\alpha}, \left(\frac{(1-\alpha)p_1}{\alpha p_2} \right)^\alpha \right) u \]

- Observe that

\[D_p h(p, u) = \begin{pmatrix} -(1-\alpha) \frac{h_1}{p_1} & (1-\alpha) \frac{h_1}{p_2} \\ \alpha \frac{h_2}{p_1} & -\alpha \frac{h_2}{p_2} \end{pmatrix} \]

- Confirm \(\alpha \frac{h_2}{p_1} = (1-\alpha) \frac{h_1}{p_2} \).

- Good 1 and 2 are substitutes because \(\alpha \frac{h_2}{p_1} > 0 \)
Example (cont’d)

- Notice $x(p, w) = \left(\alpha \frac{w}{p_1}, (1 - \alpha) \frac{w}{p_2} \right)$ which gives

$$D_p x(p, w) = \begin{pmatrix} -\frac{x_1}{p_1} & 0 \\ 0 & -\frac{x_2}{p_2} \end{pmatrix}$$

- Therefore goods 1 and 2 are both *gross* substitutes and complements.
Slutsky Equation

- For all \((p, w)\) and \(u = v(p, w)\) we have

\[
\frac{\partial x_\ell(p, w)}{\partial p_k} = \frac{\partial h_\ell(p, u)}{\partial p_k} - \frac{\partial x_\ell(p, w)}{\partial w} x_k(p, w)
\]

Or in matrix form

\[
D_p x(p, w) = D_p h(p, u) - D_w x(p, w)x(p, w)^T
\]

- Notes:
 1. This describes the relationship between slope of compensated and ordinary demand function at a given point.
 2. For normal goods: \(\frac{\partial h_\ell(p, u)}{\partial p_\ell} \geq \frac{\partial x_\ell(p, w)}{\partial p_\ell}\)
 3. For inferior goods: \(\frac{\partial h_\ell(p, u)}{\partial p_\ell} < \frac{\partial x_\ell(p, w)}{\partial p_\ell}\)

- Graphical representation?
Hicks Decomposition of a Demand Change

- The Slutsky equation decomposes a demand change induced by a price change into two separate effects:
 - substitution effect
 - income effect
Outline

Introduction

Basic elements

Utility maximization problem

Expenditure Minimization Problem

Comparative Statics

UMP vs. EMP

Welfare measurement
Welfare Evaluation

- What is welfare analysis?
 - positive vs. normative perspectives.
- Consider a change in prices from p^0 to p^1.
 - Is the consumer better off?
- Utility function and the corresponding indirect utility give level of well-being as a function of prices and wealth.
 - better off iff $v(p^1, w) - v(p^0, w) > 0$.
- How do we get a quantifiable measure of the magnitude of welfare change?
 - Ordinality of utility
Money Metric Utility Function

- Given \(p \) and \(x \), how much money (wealth) is required to attain \(u(x) \)?

\[
m(p, x) \equiv e(p, u(x)) = \min_{z \geq 0} p \cdot z
\]

\[
\text{s.t. } u(z) \geq u(x)
\]

- Holding \(p \) constant, \(m(p, x) \) is in fact a utility function. Why?
Money Metric Indirect Utility Function

- Money metric indirect utility function is defined as

\[\mu(p; q, w) \equiv e(p, v(q, w)) \]

- What does this measure?
- Fixing \(q \) and \(w \), it behaves like an expenditure function w.r.t. \(p \). Why?
- Fixing \(p \), it behaves like an indirect utility function w.r.t. \(q \). and \(w \). Why?
Quantifying welfare changes

- We use the money metric utility function to quantify $v(p^1, w) - v(p^0, w)$
 - What is the difference between expenditure needed to buy $v(p^1, w)$ and $v(p^0, w)$?
 - If we want to buy these utilities at \bar{p} then

 $$\mu(\bar{p}; p^1, w) - \mu(\bar{p}; p^0, w) = e(\bar{p}, v(p^1, w)) - e(\bar{p}, v(p^0, w))$$
How to Choose \bar{p}?

- You are free to choose any \bar{p}.
- Two choices are more popular.
- Equivalent variation (set $\bar{p} = p^0$)

$$EV(p^0, p^1, w) = e(p^0, v(p^1, w)) - e(p^0, v(p^0, w)) = e(p^0, u^1) - w$$

- If the prices were fixed at p^0, by how much should we change wealth to reach the post change utility level (u^1)?

- Compensating variation (set $\bar{p} = p^1$)

$$CV(p^0, p^1, w) = e(p^1, v(p^1, w)) - e(p^1, v(p^0, w)) = w - e(p^1, u^0)$$

- If the prices were fixed at p^1, by how much should we change wealth to reach pre change utility level (u^0)?
EV vs. CV

- p^0: initial price $\rightarrow p^1$: final price
- u^0: initial level of utility $\rightarrow u^1$: final level of utility
- $v(p, w)$: indirect utility function
- EV: Starting from initial prices, how much extra wealth does the consumer need to get the final level of utility?
 \[v(p^0, w + EV) = u^1 \]
 - What is the equivalent wealth increase that makes the consumer indifferent with the price change?
- CV: Starting from final prices, how much less wealth does the consumer need to get the initial level of utility?
 \[v(p^1, w - CV) = u^0 \]
 - After a price change, what is the compensation to leave the consumer indifferent?
Graphical Representation of EV

\[EV = e(p^0, u^1) - w \]
Graphical Representation of CV

$\mathbf{CV} = w - e(p^1, u^0)$

Points:
- $x(p^0, w)$
- $x(p^1, w)$
- $x(p^1, e(p^1, u^0))$

Lines:
- u^0
- u^1

Axes:
- x_1
- x_2
EV and CV as Areas under $h(p, u)$

- Assume only $p_1^0 \to p_1^1$, given the fact that $\frac{\partial e}{\partial p_1} = h_1$ we can write

$$EV = e(p^0, u^1) - w$$

$$= e(p^0, u^1) - e(p^1, u^1) = \int_{p_1^0}^{p_1^1} h_1(p_1, \overline{p}_{-1}, u^1) dp_1$$

- Similarly for CV

$$CV = w - e(p^1, u^0)$$

$$= e(p^0, u^0) - e(p^1, u^0) = \int_{p_1^0}^{p_1^1} h_1(p_1, \overline{p}_{-1}, u^0) dp_1$$

- Only difference between EV and CV is the utility level that h_1 is calculated at (inside the integral).
- When is $EV > CV$? When is $EV < CV$?
- Could you find a situation that $EV = CV$?
Deadweight Loss (DWL) of Taxation

- Consider a per unit tax \(p_1^1 = p_0^0 + t \), fix \(p_2^1 = p_2^0 \).
- Total revenue raised from this tax is \(T = tx_1(p_1^1, w) \).
- Is the consumer better off if we replace the per unit tax with a lump-sum tax equal to \(T \)?

\[
EV = e(p_0^0, u^1) - w < -T
\]

\[
e(p_0^0, u^1) < w - T
\]

- RHS: net wealth under lump-sum tax
 LHS: net wealth that delivers post-tax utility at pre-tax prices

- DWL is

\[
-T - [e(p_0^0, u^1) - w] = -th_1(p_1^1, p_2^0, u^1) - \int_{p_1^1}^{p_0^0} h_1(p_1, p_2^0, u^1)dp_1 = \int_{p_1^0}^{p_1^1} \left[h_1(p_1, p_2^0, u^1) - h_1(p_1^1, p_2^0, u^1) \right] dp_1
\]
Consumer Surplus (CS)

- What if we don’t know $h(p, u)$? How should we measure changes in welfare?
- One way is to calculate the areas from Walrasian demand functions
- Consumer surplus is

$$CS = \int_{p_1}^{p_0} x_1(p_1, \bar{p}_{-1}, w) dp_1$$

- sometime the term Area Variation is used instead.
- What is the relation between CV, EV, and CS?
- Normal good

$$EV > CS > CV$$

- Inferior good

$$EV < CS < CV$$

- However, if several prices change the rankings might not be obvious.
Summary

• In this topic, we have
 ■ discussed preference relations and their properties
 ■ found conditions for existence of $u(x)$
 ■ learned how to derive $x(p, w)$ (and $v(p, w)$) from UMP
 ■ learned how to derive $h(p, u)$ (and $e(p, u)$) from EMP
 ■ discussed the link between UMP and EMP
 ■ introduced welfare measurement