Sharif University of Technology
Graduate School of Management and Economics

Econometrics I

Fall 2010

Seyed Mahdi Barakchian

Textbook:

Wooldridge, J., Introductory Econometrics: A Modern Approach, South-Western College Pub (W., hereafter)

Syllabus

1. Introduction
2. Probability Theory: A Review (W. Appendix B)
3. Statistical Theory: A Review (W. Appendix C)
4. The Simple Regression Model (W. Chapter 2)
 4.1. Definition of The Simple Regression Model
 4.2. Deriving The Ordinary Least Squares Estimates
 4.3. Mechanics of OLS
 4.3.1. Fitted Values and Residuals
 4.3.2. Algebraic Properties of OLS Statistics
 4.3.3. Goodness-of-Fit
 4.4. Units of Measurement and Functional Form
 4.4.1. The Effects of Changing Units of Measurement on OLS Statistics
 4.4.2. Incorporating Nonlinearities in Simple Regression
 4.4.3. The Meaning of “Linear” Regression
 4.5. Expected Values and Variances of The OLS Estimators
 4.5.1. Unbiasedness of OLS
 4.5.2. Variances of the OLS Estimators
 4.5.3. Estimating the Error Variance
 4.6. Regression Through The Origin
5. Multiple Regression Analysis: Estimation (W. Chapter 3)
 5.1. Motivation for Multiple Regression
 5.1.1. The Model with Two Independent Variables
 5.1.2. The Model with k Independent Variables
 5.2. Mechanics and Interpretation of Ordinary Least Squares
 5.2.1. Obtaining the OLS Estimates
 5.2.2. Interpreting the OLS Regression Equation
 5.2.3. On the Meaning of “Holding Other Factors Fixed” in Multiple Regression
 5.2.4. Changing More than One Independent Variable Simultaneously
 5.2.5. OLS Fitted Values and Residuals
 5.2.6. A “Partialling Out” Interpretation of Multiple Regression
 5.2.7. Comparison of Simple and Multiple Regression Estimates
 5.2.8. Goodness‐of‐Fit
 5.2.9. Regression Through the Origin
 5.3. The Expected Value of the OLS Estimators
 5.3.1. Including Irrelevant Variables in a Regression Model
 5.3.2. Omitted Variable Bias: The Simple Case
 5.3.3. Omitted Variable Bias: More General Cases
 5.4. The Variance of the OLS Estimators
 5.4.1. The Components of the OLS Variances: Multicollinearity
 5.4.2. Variances in Misspecified Models
 5.4.3. Estimating σ^2: Standard Errors of the OLS Estimators
 5.5. Efficiency of OLS: The Gauss‐Markov Theorem
5. 5. 5. Efficiency of OLS: The Gauss‐Markov Theorem
6. Multiple Regression Analysis: Inference (W. Chapter 4)
 6.1. Sampling Distributions of the OLS Estimators
 6.2. Testing Hypotheses About A Single Population Parameter: The t Test
 6.2.1. Testing Against One‐Sided Alternatives
 6.2.2. Two‐Sided Alternatives
 6.2.3. Testing Other Hypotheses About β_j
 6.2.4. Computing p‐values for t tests
 6.2.5. Economic, or Practical, versus Statistical Significance
 6.3. Confidence Intervals
 6.4. Testing Hypotheses About A Single linear Combination of The Parameters
 6.5. Testing Multiple Linear Restrictions: The F Test
 6.5.1. Testing Exclusion Restrictions
 6.5.2. Relationship Between F and t Statistics
 6.5.3. The R‐Squared Form of the F Statistic
 6.5.4. Computing p‐values for F Tests
 6.5.5. The F Statistic for Overall Significance of a Regression
 6.5.6. Testing General Linear Restrictions
6.6. Reporting Regression Results

7. Multiple Regression Analysis: OLS Asymptotics (W. Chapter 5)
 7.1. Consistency
 7.1.1. Deriving the Inconsistency in OLS
 7.2. Asymptotic Normality And Large Sample Inference
 7.2.1. Other Large Sample Tests: The Lagrange Multiplier Statistic
 7.3. Asymptotic Efficiency of OLS

8. Multiple Regression Analysis: Further Issues (W. Chapter 6)
 8.1. Effects of Data Scaling on OLS Statistics
 8.1.1. Beta Coefficients
 8.2. More on Functional Form
 8.2.1. More on Using Logarithmic Functional Forms
 8.2.2. Models with Quadratics
 8.2.3. Models with Interaction Terms
 8.3. More on Goodness-of-Fit and Selection of Regressors
 8.3.1. Adjusted R-Squared
 8.3.2. Using Adjusted R-Squared to Choose Between Nonnested Models
 8.3.3. Controlling for Too Many Factors in Regression Analysis
 8.3.4. Adding Regressors to Reduce the Error Variance
 8.4. Prediction and Residual Analysis
 8.4.1. Confidence Intervals for Predictions
 8.4.2. Residual Analysis
 8.4.3. Predicting y When log(y) Is the Dependent Variable

9. Multiple Regression Analysis With Qualitative Information: Binary (or Dummy) Variables (W. Chapter 7)
 9.1. Describing Qualitative Information
 9.2. A Single Dummy Independent Variable
 9.2.1. Interpreting Coefficients on Dummy Explanatory Variables When the Dependent Variable Is log(y)
 9.3. Using Dummy Variables for Multiple Categories
 9.3.1. Incorporating Ordinal Information by Using Dummy Variables
 9.4. Interactions Involving Dummy Variables
 9.4.1. Interactions Among Dummy Variables
 9.4.2. Allowing for Different Slopes
 9.4.3. Testing for Differences in Regression Functions Across Groups
 9.5. A Binary Dependent Variable: A Linear Probability Model

10. Heteroskedasticity (W. Chapter 8)
 10.1. Consequences of Heteroskedasticity for OLS
 10.2. Heteroskedasticity-Robust Inference After OLS Estimation
 10.2.1. Computing Heteroskedasticity-Robust LM Tests
10.3. Testing for Heteroskedasticity
 10.3.1. The Breusch-Pagan Test For Heteroskedasticity
 10.3.2. The White Test for Heteroskedasticity

10.4. Weighted Least Squares
 10.4.1. The Heteroskedasticity Is Known up to a Multiplicative Constant
 10.4.2. The Heteroskedasticity Function Must Be Estimated: Feasible GLS

10.5. The Linear Probability Model Revisited

11. More On Specification and Data Problems (W. Chapter 9)
 11.1. Functional Form Misspecification
 11.1.1. RESET as a General Test for Functional Form Misspecification
 11.1.2. Tests Against Nonnested Alternatives
 11.2. Using Proxy Variables for Unobserved Explanatory Variables
 11.2.1. Using Lagged Dependent Variables as Proxy Variables
 11.3. Properties of OLS under Measurement Error
 11.3.1. Measurement Error in the Dependent Variable
 11.3.2. Measurement Error in an Explanatory Variable
 11.4. Missing Data, Non-Random Samples, and Outlying Observations
 11.4.1. Missing Data
 11.4.2. Nonrandom Samples
 11.4.3. Outlying Observations

12. Instrumental Variables Estimation and Two Stage Least Squares (W. Chapter 15)
 12.1. Omitted Variables in a Simple Regression Model
 12.1.1. Statistical Inference with the IV Estimator
 12.1.2. Properties of IV with a Poor Instrumental Variable
 12.1.3. Computing R-Squared After IV Estimation
 12.2. IV Estimation of the Multiple Regression Model
 12.3. Two Stage Least Squares
 12.3.1. A Single Endogenous Explanatory Variable
 12.3.2. Multicollinearity and 2SLS
 12.3.3. Multiple Endogenous Explanatory Variables
 12.3.4. Testing Multiple Hypotheses After 2SLS Estimation
 12.4. IV Solutions to Errors-in-Variables Problems
 12.5. Testing for Endogeneity and Testing for Over-identifying Restrictions
 12.5.1. Testing for Endogeneity
 12.5.2. Testing Overidentification Restrictions
 12.6. 2SLS with Heteroskedasticity
 12.7. Applying 2SLS to Time-Series Equations

13. Basic Regression Analysis with Time Series Data (W. Chapters 10)
 13.1. The Nature of Time Series Data
 13.2. Examples of Time Series Regression Models
13.2.1. Static Models
13.2.2. Finite Distributed Lag Models

13.3. Finite Sample Properties of OLS under Classical Assumptions
 13.3.1. Unbiasedness of OLS
 13.3.2. The Variances of the OLS Estimators and the Gauss-Markov Theorem
 13.3.3. Inference Under the Classical Linear Model Assumptions

13.4. Functional Forms, Dummy Variables, and Index Numbers

13.5. Trends and Seasonality
 13.5.1. Characterizing Trending Time Series
 13.5.2. Using Trending Variables in Regression Analysis
 13.5.3. A Detrending Interpretation of Regressions with a Time Trend
 13.5.4. Computing R-squared when the Dependent Variable is Trending
 13.5.5. Seasonality

14. Serial Correlation and Heteroskedasticity in Time Series Regressions (W. Chapters 12)
 14.1. Properties of OLS with Serially Correlated Errors
 14.1.1. Unbiasedness and Consistency
 14.1.2. Efficiency and Inference
 14.1.3. Serial Correlation in the Presence of Lagged Dependent Variables
 14.2. Testing for Serial Correlation
 14.2.1. A t test for AR(1) Serial Correlation with Strictly Exogenous Regressors
 14.2.2. The Durbin-Watson Test Under Classical Assumptions
 14.2.3. Testing for AR(1) Serial Correlation without Strictly Exogenous Regressors
 14.2.4. Testing for Higher Order Serial Correlation
 14.3. Correcting for Serial Correlation with Strictly Exogenous Regressors
 14.3.1. Obtaining the Best Linear Unbiased Estimator in the AR(1) Model
 14.3.2. Feasible GLS Estimation with AR(1) Errors
 14.3.3. Comparing OLS and FGLS
 14.3.4. Correcting for Higher Order Serial Correlation
 14.4. Differencing and Serial Correlation
 14.5. Serial Correlation-Robust Inference after OLS
 14.6. Heteroskedasticity in Time Series Regressions
 14.6.1. Heteroskedasticity-Robust Statistics
 14.6.2. Testing for Heteroskedasticity
 14.6.3. Autoregressive Conditional Heteroskedasticity
 14.6.4. Heteroskedasticity and Serial Correlation in Regression Models