Contract Enforcement and Capital Misallocation in Less-Developed Economies

Mehran Ebrahimian Seyed Ali Madanizadeh

Sharif University of Technology

April 15, 2015
Capital Misallocation in Less-Developed Economies:

- **Banerjee and Duflo (2005)**
 - Output/Worker, USA vs. India:
 - Data: 11:1
 - Estimation from Aggregate Variables: 6.5:1
 - Explaining by Heterogenous Access to Credit

- **Hsieh and Klenow (2009)**
 - Wide range of plants’ TFP in India/China with respect to USA
 - Explaining by distorted prices of output/capital for plants
 - 30-50% TFP Loss in China
 - 40-60% TFP Loss in India
Capital Productivity in Iran:

Figure: Average Growth of Capital Productivity (%) in Manufacturing Sectors, 2000:2007. source: Nili et al. (2012)
What is the Role of Contract Enforcement in Capital Misallocation of Less-Developed Economies?
The Model

- OLG model with Imperfect Financial Market
- Endogenous Household/Entrepreneur Population
- Financial Market Frictions:
 - Asymmetric Information on Borrower’s Productivity
 - Poor Contract Enforcement, Strategic Default
Main Findings

1. Equilibrium Loan Interest Rate diverges, everyone defaults
2. 50% increase in degree of Contract Enforcement:
 - 85% gain in Average Capital Productivity (given aggregate level)
 - 40% decrease in 90/10 Income Inequality Ratio
 - 40% increase in share of Hired Labor in Capital Intensive Sector
Model Setup

Population:
- The Young:
 - Supply Labor Force
- The Old:
 - Potential Firms with Different Productivities
 1. Supply Capital
 2. Operate Firm + Demand Capital/Labor
Model Setup

Markets:

- Financial Market:
 - Competitive
 - No friction between depositors and intermediaries
 - **Asymmetric information** on borrower/firm’s productivity
 - The possibility of **strategic default**:
 - Borrowers may default on their loans.
 - The proportion $\theta < 1$ of their wealth is accessible for intermediaries.

- Labor Market:
 - Frictionless
 - Exogenous wage
Timing and Actions Set:

1. The young supply labor.
2. The old pick up a productivity (A_i) from a known distribution.
3. Intermediaries set returns on deposits (\bar{R}).
4. The old decide whether to operate firm or not.
 - Inactive agents: supply loan to financial intermediaries.
 - Businessmen: demand labor, decide on external financing.
5. Intermediaries set return on loans (R_i).
6. Intermediaries distribute loans (l_i) between borrowers.
7. Borrowers decide whether to default or not.
8. Intermediaries pay the returns on deposits.
9. The young consume and save (s_i) for the next period.
10. The old consume and die.
Model Setup

Equilibrium Definition:

Bayesian Nash Equilibrium
Agent i’s Problem:

\[
\begin{align*}
max & \quad \log(c_1) + \beta \log(c_2) \\
\text{s.t.} & \quad c_1 + s \leq w \\
& \quad c_2 \leq s(1 + \rho_i)
\end{align*}
\]

→ Inelastic Aggregate Capital Supply
• **Agent i’s Problem:**

\[
\max \rho_i \\
\text{subjected to 4 possibilities}
\]

1. Making Deposit
2. Running Business, without taking loan
3. Running Business, demanding loan, paying the loan
4. Running Business, demanding loan, defaulting on the loan

\[
s(1 + \rho_i) = \begin{cases}
 s(1 + \bar{R}) \\
 s(1 + r_i) \\
 [s + l(s)](1 + r_i) - l(s)(1 + R_i) \\
 (1 - \theta)[s + l(s)](1 + r_i)
\end{cases}
\]
The Old

- **Agent i’s Decision:**

 \[r_{0,i} = \frac{s_i}{l_i + s_i} \frac{1 + \bar{R}}{1 - \theta} - 1 \]

 \[r_{ndc,i} = \frac{l_i}{l_i + s_i} \frac{1 + R_i}{\theta} - 1 \]

 \[l_i / (l_i + s_i) \]

 \[r_i \]

 1. Make Deposit
 2. Run Business
 3. Run Business Demand Loan
 4. Run Business Demand Loan Default

Ebrahimian, Madanizadeh (GSME) Contract Enforcement and Capital Misallocation 14 / 25
Firms

- **Firm i’s Problem:**

\[
\max_{\{h\}} \pi_i = A_i k^\alpha h^{1-\alpha} - wh
\]

s.t. \(k \leq k_i\)

- **Firm i’s Decision:**

\[
h_i = \left(\frac{(1 - \alpha)A_i}{w}\right)^{1/\alpha k_i}
\]

- **Firm i’s Profit:**

\[
\pi_i = r_i k_i
\]

\[
r_i := \frac{\alpha}{1 - \alpha} \left(\frac{(1 - \alpha)A_i}{w}\right)^{1/\alpha w}
\]
Intermediaries

- Monopoly’s Profit:

\[
\pi_m(\tilde{R}, R) = \max_{l(w)} \sum_i l_i [R - P_D(\tilde{l}_i)(1 + R - \theta(1 + \bar{r})/\tilde{l}_i)] - \sum_i l_i \bar{R}
\]

\[s.t. \; \sum_i l_i \leq N_s s\]

→ \(l_i = l(w_i), \; \tilde{l}_i = l_i/(l_i + w_i), \; w_i: \) Agent i’s Wealth Demanding for Loan.

- Proportional Loan.
Intermediaries

- Symmetric Competitive Equilibrium:

\[z_c = (\bar{R}_c, R_c, l_c(w)) \]

Theorem

1. \(\pi_m(\bar{R}_c, R_c) = 0 \)
2. \(N_s s = N_d l_c(s) \)
3. \(\bar{R}_c \) and \(R_c \) maximize \(\pi_m(\bar{R}, R) \) subjected to \(\bar{R} \geq \bar{R}_c \).
Intermediaries

Definition (R^*)

$$1 - F(R^*) = \theta$$

Theorem

$$\bar{R}_c \geq R^*$$
$$R_c \geq R^*$$

Proof.

- For $\bar{R} < R^*$, Loan to Wealth is less than $\tilde{\theta}$.
- No Default: $\pi_m = (R - \bar{R})L.$
Theorem

For $R^* \leq \bar{R}$ and $R^* < R < r_{max}$,

$$\frac{\partial \pi_m(\bar{R}, R)}{\partial R} > 0$$

Proof.

- For $R^* \leq \bar{R}$, Loan to Wealth ratio is more than $\tilde{\theta}$.
- Marginal defaulting firms are small.
Theorem

- $R_c = r_{max}$
- $R^* < R_c < r_{max}$

Proof.

1. $\frac{\partial \pi_m(R^*, R)}{\partial R} > 0$, $\pi_m(R^*, R^*) = 0$: $\pi_m(R^*, r_{max}) > 0$
2. Everyone Defaults: $\pi_m(r_{max}, r_{max}) < 0$
Average Capital Productivity

Productivity Distribution: Pareto (σ), Average: 0.5-1

- $\sigma = 5$
- $\sigma = 3$
- $\sigma = 2$
- $\sigma = 1.5$
- $\sigma = 1.2$
90/10 Income Inequality Ratio

Productivity Distribution:
Pareto (σ), Average: 0.5-1

$\sigma = 5$
$\sigma = 3$
$\sigma = 2$
$\sigma = 1.5$
$\sigma = 1.2$
Results

Numerical Results

Share of Hired Labor in Capital Intensive Sector

Productivity Distribution:
Pareto (σ), Average: 0.5

\[\alpha = \frac{1}{3}, \beta = 0.5 \]

\[\sigma = 5, \sigma = 3, \sigma = 2, \sigma = 1.5, \sigma = 1.2 \]
Thanks
References

