On Money As A Medium Of Exchange
Kiyotaki, Wright (1989)

S.Ekbatani, S.Ahmadi-Renani

Sharif University of Technology
Graduate School of Management and Economics

3 Khordad 1393
Abstract

- Nash equilibria in trading strategies: Certain goods emerge endogenously as media of exchange, or commodity money.
- Equilibria with genuine fiat currency circulating as the general medium of exchange.
- That equilibria are not generally Pareto optimal.
- Introducing fiat currency into a commodity money economy may unambiguously improve welfare.
Introduction

- Analyze a simple general equilibrium matching model
- Objects that become media of exchange will be determined endogenously as part of the noncooperative equilibrium.
- Different commodities potentially playing this role depending both on their intrinsic properties and on extrinsic beliefs.
- Genuine fiat currency may or may not circulate in the economy, depending on extrinsic beliefs, or social custom, preferences and technology.
- Overlapping generations models basically ignore the medium of exchange role, concentrating on money’s store of value function.
- Cash-in-advance models simply impose the medium of exchange role by an ad hoc restriction that goods can be acquired only using money.
Introduction

- Ideas going back at least to Adam Smith (1776), the driving force behind the use of money is specialization.
- Agents do not necessarily consume what they produce.
- Trade must be bilateral and quid pro quo.
- Jevons’s (1875) “double coincidence of wants” problem.
- A critical factor in determining if an object can serve as a medium of exchange is whether or not agents believe that it will.
- Involves strategic elements.
The Goal

- To use the sequential matching model to derive commodity and/or fiat money endogenously
Three indivisible commodities called goods 1, 2, and 3

Continuum of infinitely lived agents with unit mass, with equal proportions of types I, II, and III

Specialize in both consumption and production: type i agents derive utility only from the consumption of good i and are able to produce only good $i^* \neq i$

All goods are storable at a cost, but agents can store only one unit at a time

Let c denote the cost to type i of storing good j. assume $c_{i3} > c_{i2} > c_{i1} > 0$ for all i
The Economy

- U_i denote the instantaneous utility from consuming good i
- D_i denote instantaneous disutility from producing good i^*
- i’s expected discounted lifetime utility:

$$E \sum_{t=0}^{\infty} \beta^t [I_{iU}(t)U_i - I_{i^*D}(t)D_i - I_{ij}^c(t)c_{ij}]$$

- $I_{iU}(t)$ is a (random) indicator function that equals one if the agent eats his consumption good z, zero otherwise
- $I_{i^*D}(t)$ equals one if he produces his production good i^*, zero otherwise
- $I_{ij}^c(t)$ equals one if he stores any good j, zero otherwise
The Economy

- Net utility $u_i = U_i - D_i$ is large enough that agent will not want to drop out of the economy
- Assumption A. For all i, $u_i > (c_{ii^*} - c_{ik})/(1 - \beta)$, for all k
- Type i acquires his consumption good i, he will consume it and produce a new unit of i^*
- Each type i always has an inventory of exactly one unit of one good other than good i
- Each period, agents are matched randomly in pairs and must decide whether or not to trade bilaterally
The distribution of potential matches can be characterized by the time path of $p(t) = \ldots p_{ij} \ldots$

p_{ij} is the proportion of type i agents holding good j in inventory at date t

steady-state equilibria, $p(t) = p$ for all t

$\tau_i(j, k) = 1$ if i wants to trade j for k, and zero otherwise

Type i with good j and type h with good k trade if $\tau_i(j, k) \cdot \tau_h(k, j) = 1$
The Economy

- **Definition.** A steady-state Nash equilibrium is a set of trading strategies τ_i, one for each type i, together with a steady-state distribution of inventories p, that satisfies
 - Maximization: each individual i chooses τ_i to maximize expected utility given the strategies of others and the distribution p
 - Rational expectations: given τ_i, p is the resulting steady-state distribution
The Economy

- Let $V_i(j)$ be the expected discounted utility for type i when he exits a trading opportunity with good j.

- When i exits with his own consumption good i, he yields the instantaneous utility $u_i = U_i - D_i$ plus the indirect utility of storing a i^*. Therefore, $V_i(i) = u_i + V_i(i^*)$.

- The indirect utility of storing good $j \neq i$ described by Bellman’s equation of dynamic programming:

$$V_i(j) = -c_{ij} + \max \beta E[V_i(j')|j]$$

- Where $E[V_i(j')|j]$ is the expectation of V_i at the next period’s random state j'.
With shorthand notation $V_{ij} \equiv V_i(j)$

$$\tau_i(j, k) = 1 \quad \text{iff} \quad V_{ik} > V_{ij}$$

In equilibrium, agents of the same type never trade since both cannot prefer what the other has.
Lemma 1. Under assumption A, each type \(i \) will accept good \(i \), eat it, and produce a new unit of good \(i^* \) whenever he has the opportunity. That is, for all \(i \), \(\max_j V_{ij} = V_{ii} = u_i + V_{ii^*} \)

Proof. Suppose that some \(i \) prefers \(k \neq i \) to all other goods:

\[
V_{ik} = -\frac{c_{ik}}{1-\beta} \geq V_{ii} \geq u_i - \frac{c_{ii^*}}{1-\beta}
\]

If he does not consume it:

\[
V_{ii} = -\frac{c_{ii}}{1-\beta} \geq u_i + V_{ii^*} \geq u_i - \frac{c_{ii^*}}{1-\beta}
\]

Both contradicting Assumption A.
Trade always occurs when a double coincidence emerges.
Equilibrium: Model A

- Type I produces good 2, II produces good 3, and III produces good 1
- **Fundamental** equilibrium: Agents always prefer a lower-storage-cost commodity to a higher-storage-cost commodity unless the latter is their own consumption good
- **Speculative** equilibrium: Sometimes agents trade a lower- for a higher-storage-cost commodity not because they wish to consume it, but because it is more marketable
The fundamental strategies are described by $V_{ii} = \max_j V_{ij}$ for all i and the inequalities $V_{12} > V_{13}$, $V_{21} > V_{23}$, and $V_{31} > V_{32}$.
Equilibrium: Model A

- A typical type I agent when he exits a match with good 2, \(b = \beta/3 \)
 \[
 V_{12} = -c_{12} + b[V_{12} + p_{21}(u_1 + V_{12}) + p_{23} \max(V_{12}, V_{13}) + V_{12}]
 \]

- A similar story when I exits a match with good 3 implies
 \[
 V_{13} = -c_{13} + b[V_{13} + V_{13} + p_{31}(u_1 + V_{12}) + p_{32} \max(V_{12}, V_{13})]
 \]

- It is easy to show \(V_{12} > V_{13} \) iff \(c_{13} - c_{12} > (p_{31} - p_{21})bu_1 \)
Equilibrium: Model A

- A typical type II agent
 \[V_{21} = -c_{21} + b[p_{12}(u_2 + V_{23}) + p_{13}\max(V_{21}, V_{23}) + V_{21} + p_{31}V_{21} + p_{32}\max(u_2, V_{23})] + V_{21} \]
 \[V_{23} = -c_{23} + b[V_{23} + V_{23} + p_{31}\max(V_{21}, V_{23}) + p_{32}(u_2 + V_{23})] \]

- It is easy to show \(V_{21} > V_{23} \) for all parameter values and \(p_{ij} \)

- The same sort of arguments imply \(V_{31} > V_{32} \)
Equilibrium: Model A

- For these fundamental strategies, the steady-state inventory distribution \mathbf{p} is given by $(p_{12}, p_{23}, p_{31}) = (1, .5, 1)$, and these strategies constitute equilibrium iff $c_{13} - c_{12} > .5b u_1$
- Type I and type III always keep their production goods until they can trade directly for their consumption goods.
- Type II agents trade their production good 3 for good 1 whenever possible. They thereby act as *middlemen* transferring good 1 from type III to type I.

![Diagram of trade routes between type I, II, and III agents]

- Good 1 is the unique medium of exchange, or commodity money.
Equilibrium: Model A

- If \(c_{13} - c_{12} < (p_{31} - p_{21})bu_1 \), the best response by type I to fundamental play in this case is to speculate by attempting to trade good 2 for good 3, which has a higher storage cost but is also more marketable.
- Fundamental play is still the best response by II and III.
- The inventory distribution implied by these strategies is given by \((p_{12}, p_{23}, p_{31}) = (.5\sqrt{2}, \sqrt{2} - 1, 1)\), and so speculative equilibrium obtains iff \(c_{13} - c_{12} < (\sqrt{2} - 1)bu_1 \).
- Type I agents now also play the role of middlemen in some trades, while uses good 3 as a medium of exchange.
Equilibrium: Model A

- Dual commodity monies, with both the most storable and the least storable objects
- An example of an object used as a medium of exchange in spite of the fact that it is dominated in rate of return by another object
- No other pure equilibrium exists, but there are mixed strategy equilibria
Equilibrium: Model B

- Type I produces good 3, II produces good 1, and III produces good 2.
- There exists an equilibrium with all agents playing fundamental, and the distribution is given by \((p_{12}, p_{23}, p_{31}) = (0.5\sqrt{2}, 1, \sqrt{2} - 1)\).
- Type II agents store their production good until they can buy their consumption good directly, while types I and III trade for more storable commodities.

Both goods 1 and 2 serve as media of exchange.
Equilibrium: Model B

- In speculative equilibrium \((p_{12}, p_{23}, p_{31}) = (\sqrt{2} - 1, .5\sqrt{2}, 1)\) type III agents speculate by not trading their higher-storage-cost good 2 when offered good 1. Type II speculates too by acquiring the costly good 3 from type I to facilitate trade with III. Type I buys good 2 from type III to reduce his storage cost and also to facilitate trade with type II.
- Both goods 2 and 3 serve as commodity money while, the most storable good 1 does not.

- In some nonempty region of parameter space these two equilibria coexist. Either goods 1 and 2 or goods 2 and 3 may end up as commodity monies, depending solely on extrinsic beliefs.
Fiat Money

- Fiat money is by definition an object that is intrinsically worthless (does not appear in any utility or production function).
- Economy is endowed with a fixed quantity of a new object called good 0. No one will derive utility from it and it is no help in production. It is, by definition, fiat money.
- $c_i 0 = 0$ but one can not hold both fiat currency and real commodities at the same time (only one storage).
- If P units of good 0 are required to buy one unit of each of real commodities, then $S = M/P$ will be the quantity of real balances in circulation.
- Given that each agent holding fiat money will have exactly P units of the stuff, S will also equal the proportion of all agents holding good 0, $S = \sum_i p_{i0}/3$.

S.Ekbatani, S.Ahmadi-Renani (GSME)
Fiat Money

- *General* medium of exchange, which is by definition an object "which is habitually, and without hesitation, taken by anybody in exchange for any commodity" (Wicksell 1967)

- There exists equilibria in which fiat money does not circulate, $V_{i0} = 0$

- Everyone believes that others will accept fiat money and ask if this could be an equilibrium

- Good 0 is preferred to the other goods

- For type I, good 1 is best and good 0 is second-best, but what about goods 2 and 3? It depends on the quantity of real balances in circulation
Fiat Money

- Choose S, determining \(\pi = \pi(S) \), with following conditions are satisfied, there exists an equilibrium in which all agents play fundamental strategies.

\[
\begin{align*}
(i) \quad & [1 - 2b + b\pi^3(1 + \pi)^{-1}(1 + \pi - \pi^2)^{-1}](c_{13} - c_{12}) \\
& > b\pi(1 + \pi)^{-1}(1 + \pi - \pi^2)^{-1}\left[\pi(1 - \pi)c_{12} + u_1\left(1 - 2b + \frac{b\pi^2}{1 + \pi}\right)\right], \\
(ii) \quad & \left(1 - 2b - \frac{b\pi^2}{1 + \pi}\right)(c_{32} - c_{31}) > b\pi^3(1 - \pi)(1 + \pi)^{-1} \\
& \quad \cdot (1 + \pi - \pi^2)^{-1}c_{31},
\end{align*}
\]

- Condition (i) rules out speculation by type I
- Condition (ii) is less easy to interpret; However it is redundant for small S
- These conditions hold for any value of S in \([0,1]\) if \(c_{13}\) and \(c_{32}\) are sufficiently large
Fiat Money

- $S = 0$, we are back to commodity money
- $S = 1$ there is nothing but fiat money in circulation
- $0 < S < 1$ both real and fiat money; However, fiat money is the only general medium of exchange: no agent ever offers good 0 for good j and gets refused

![Fig. 7.—Fiat money equilibrium](image-url)
Fiat Money

- (a) stocks of good j,
- (b) the number of times it gets traded per period,
- (c) its velocity,
- (d) the probability it gets accepted
Utility levels, given by $W_i = (1 - \beta) \sum_j p_{ij} V_{ij}$

Are the equilibrium outcomes optimal relative to other sets of trading strategies?

If all use the $\tau \equiv 1$ strategy, we conclude that equilibria are not generally optimal.

He has incentive to reject offers of high-storage-cost goods even though when everyone behaves so "selfishly" they will all be worse off in the long run.
The fundamental commodity money equilibrium for model A is actually a special case of fiat money equilibrium with $S = 0$

$\partial W_i / \partial S > 0$ for all i as long as the u_i are not too large

using fiat money reduces the inefficient storage of real commodities
Welfare

- Fiat money is neutral here

- Welfare depends solely on real balances, $S = \frac{M}{P}$, not nominal balances, M
Questions?