Dornbusch, Fischer, Samuelson (DFS) Model

Seyed Ali Madanizadeh

Sharif U. of Tech.
April 2014

Introduction

- Ricardian Trade Theory
- Dornbusch, Fischer, Samuelson AER (1977)
- A convenient parameterization for multi-goods model
- Extension to transportation costs

Model

- Two countries H,F
- Same preferences
- Multi goods: Commodity space $j \in[0,1]$
- Factor of production: Labor L_{H}, L_{F}
- CRS production
- Labor productivity in producing good $j: z_{H}(j), z_{F}(j)$

$$
A(j) \equiv \frac{z_{H}(j)}{z_{F}(j)}
$$

- Order goods with decreasing $A(j)$; i.e. $A^{\prime}(j)<0$ (See picture) A continious and strictly increasing.

Model

- Competitive equilibrium
- Costless trade: no transportation costs, tariffs
- Wage rates: w_{H}, w_{F}
- Buy j from vendor in H if

$$
p_{H}(j)=\frac{w_{H}}{z_{H}(j)} \leq \frac{w_{F}}{z_{F}(j)}=p_{F}(j)
$$

or if

$$
\omega=\frac{w_{H}}{w_{F}} \leq \frac{z_{H}(j)}{z_{F}(j)}=A(j)
$$

- H has comparative advantage in goods where $A(j) \geq \omega$.(See picture)

Model

- For a given ω, define the cutoff point $j^{*}=\phi(\omega)=A^{-1}(\omega)$
- Good j where $j \leq j^{*}$ ar eproduced in H the rest in F.(See picture)
- $j \in[0, \phi(\omega)]$ are produced in H
- $j \in[\phi(\omega), 1]$ are produced in F

Demand

- HH's problem:

$$
\max _{Q(j)} \int_{0}^{1} \log Q(j) d j
$$

- Budget constraint

$$
\int_{0}^{1} p(j) Q(j) d j=M=w L
$$

- Demands

$$
p(j) Q(j)=M
$$

Prices

$$
\begin{aligned}
& p(j)=\frac{w_{H}}{z_{H}(j)} \text { if } j \in[0, \phi(\omega)] \\
& p(j)=\frac{w_{F}}{z_{F}(j)} \text { if } j \in[\phi(\omega), 1]
\end{aligned}
$$

Equilibrium

- Labor market equilibrium in H :

$$
\begin{aligned}
& L_{H}=\int_{0}^{j^{*}(\omega)}(\underbrace{\frac{M_{H}}{p(j)}}_{=Q_{H}(j)}+\underbrace{\frac{M_{F}}{p(j)}}_{=Q_{F}(j)}) \cdot d j \\
&=\int_{0}^{\phi(\omega)}\left(\frac{M_{H}}{w_{H}}+\frac{M_{F}}{w_{H}}\right) d j \\
&=\int_{0}^{\phi(\omega)}\left(L_{H}+\frac{L_{F}}{\omega}\right) d j \\
& \omega L_{H}=\phi(\omega)\left(\omega L_{H}+L_{F}\right)
\end{aligned}
$$

Solution

- Fixed point problem (See picture)

$$
\omega=\frac{\phi(\omega)}{1-\phi(\omega)} \frac{L_{F}}{L_{H}}
$$

Alternative solution 1

- Fraction of world income spent on a's goods

$$
\int_{0}^{\phi(\omega)} \frac{p(j) Q(j)}{M} d j=\int_{0}^{\phi(\omega)} d j=\phi(\omega)
$$

- Solve for equilibrium relative wage

$$
\begin{aligned}
& w_{H} L_{H} \\
&=\phi(\omega)^{*} \text { world Income } \\
&=\phi(\omega)\left(w_{H} L_{H}+w_{F} L_{F}\right) \\
& \Rightarrow \quad \omega=\frac{\phi(\omega)}{1-\phi(\omega)} \frac{L_{F}}{L_{H}}
\end{aligned}
$$

Alternative solution 2

- Equilibrium: Income = Expenditure
- Income and expenditure in each country n is $w_{n} L_{n}$
- Thus H^{\prime} 's sales at home are just $j^{*} w_{H} L_{H}$ while its export revenues are $j^{*} w_{F} L_{F}$.
- Full employment in H thus requires that

$$
w_{H} L_{H}=j^{*} \cdot\left(w_{H} L_{H}+w_{F} L_{F}\right)
$$

- Solve for equilibrium relative wage \Rightarrow

$$
\omega=\frac{\phi(\omega)}{1-\phi(\omega)} \frac{L_{F}}{L_{H}}
$$

An example

- Let's take

$$
A(j)=\left(\frac{T_{H}}{T_{F}}\right)^{\frac{1}{\theta}}\left(\frac{j}{1-j}\right)^{-\frac{1}{\theta}}
$$

- Explanation!
- Result:

$$
\omega=\left(\frac{T_{H} / L_{H}}{T_{F} / L_{F}}\right)^{\frac{1}{1+\theta}}
$$

Transportation costs

- $d_{i j}$ is the iceberg-cost of sending a good to from j to i.
- F buys good j from H if

$$
\frac{w_{H} d_{F H}}{z_{H}(j)} \leq \frac{w_{F}}{z_{F}(j)}
$$

or if

$$
\omega \leq \frac{z_{H}(j)}{z_{F}(j)} \frac{1}{d_{F H}}
$$

- So there is a j^{\prime} such that $\omega=\frac{z_{H}\left(j^{\prime}\right)}{z_{F}\left(j^{\prime}\right)} \frac{1}{d_{F H}}$

Transportation costs

- H buys good j from H if

$$
\frac{w_{H}}{z_{H}(j)} \leq \frac{w_{F} d_{H F}}{z_{F}(j)}
$$

or if

$$
\omega \leq \frac{z_{H}(j)}{z_{F}(j)} d_{H F}
$$

- So there is a $j^{\prime \prime}$ such that $\omega=\frac{z_{H}\left(j^{\prime \prime}\right)}{z_{F}\left(j^{\prime \prime}\right)} d_{H F}$. (See picture)
- Goods $j \in\left(j^{\prime}, j^{\prime \prime}\right)$ are produced for domestic consumption only.

Transportation costs: Equilibrium

- In equilibrium: Income = Expenditure

$$
w_{H} L_{H}=j^{\prime} w_{F} L_{F}+j^{\prime \prime} w_{H} L_{H}
$$

or

$$
\omega L_{H}=A^{-1}\left(\omega d_{F H}\right)+A^{-1}\left(w / d_{H F}\right) \omega L_{H}
$$

Transportation costs: Equilibrium

- In the example above we get

$$
j^{\prime \prime}=\frac{T_{H} w_{H}^{-\theta}}{\Phi_{H}}
$$

where $\Phi_{H}=T_{H} w_{H}^{-\theta}+T_{F}\left(d_{H F} w_{F}\right)^{-\theta}$
and

$$
j^{\prime}=\frac{T_{H}\left(d_{F H} w_{H}\right)^{-\theta}}{\Phi_{F}}
$$

where $\Phi_{F}=T_{H}\left(d_{F H} w_{H}\right)^{-\theta}+T_{F} w_{F}^{-\theta}$

Welfare Gains:

- Price index

$$
\begin{aligned}
P_{H} & =\exp \left\{\int_{0}^{1} \log p(j) d j\right\} \\
& =\exp \left\{\int_{0}^{j^{\prime \prime}} \log w_{H}-\log z_{H}(j) d j+\int_{j^{\prime \prime}}^{1} \log d_{H F} w_{F}-\log z_{F}(j) d j\right.
\end{aligned}
$$

- Under Autarky

$$
P_{H}^{A}=\exp \left\{\int_{0}^{1} \log w_{H}^{A}-\log z_{H}(j) d j\right\}
$$

- It can be shown that:

$$
\frac{w_{H} / P_{H}}{w_{H}^{A} / P_{H}^{A}}=\left(\frac{T_{H} w_{H}^{-\theta}}{\Phi_{H}}\right)^{-1 / \theta}=\left(1+\frac{T_{F}}{T_{H}}\left(\frac{d_{H F} w_{F}}{w_{H}}\right)^{-\theta}\right)^{1 / \theta}
$$

Welfare Gains:

- If $d_{H F}=d_{F H}=1 \Rightarrow$

$$
\frac{w_{H} / P_{H}}{w_{H}^{A} / P_{H}^{A}}=\left(1+\left(\frac{T_{F}}{T_{H}}\right)^{1 /(1+\theta)}\left(\frac{L_{F}}{L_{H}}\right)^{\theta /(1+\theta)}\right)^{1 / \theta}
$$

- If $d_{H F}=d_{F H}=d$ and $T_{H}=T_{F}$ and $L_{H}=L_{F} \Rightarrow w_{H}=w_{F} \Rightarrow$

$$
\frac{w_{H} / P_{H}}{w_{H}^{A} / P_{H}^{A}}=\left(1+d^{-\theta}\right)^{1 / \theta}
$$

Extension (Eaton Kortum 2002 Framework)

- To extend, first we need to extend the framework to a new commodity space.
- Think of each country i's efficiency at making any good j as the realization of a random variable Z_{i} drawn independently from a probability distribution $F_{i}(z)$. Or by the pair $\left(x_{1}, x_{2}\right)$ of labor requirements.
- Describe joint distribution by measure μ on Borel sets of R_{++}^{2}.

Extension (Eaton Kortum 2002 Framework)

- Goods produced in H are

$$
\begin{aligned}
B_{H}(\omega) & =\left\{\left(x_{1}, x_{2}\right) \in R_{++}^{2}: \omega x_{1} \leq x_{2}\right\} \\
\mu\left(B_{H}(\omega)\right) & =\text { Fraction of spending on H's goods }
\end{aligned}
$$

- Equilibrium: Income $=$ Expenditure

$$
w_{H} L_{H}=\mu\left(B_{H}(\omega)\right)\left(w_{H} L_{H}+w_{F} L_{F}\right)
$$

or

$$
\begin{aligned}
\omega L_{H} & =\mu\left(B_{H}(\omega)\right)\left(\omega L_{H}+L_{F}\right) \\
\omega & =\frac{\mu\left(B_{H}(\omega)\right)}{1-\mu\left(B_{H}(\omega)\right)} \frac{L_{F}}{L_{H}}
\end{aligned}
$$

A convenient parameterization

- Based on exponential distribution on R_{+}, with cdf

$$
\Phi(x)=\operatorname{Pr}(X \leq x)=1-e^{-\lambda x}
$$

and density

$$
\phi(x)=\lambda e^{-\lambda x}
$$

- Write $X^{\sim} \exp (\lambda)$

A convenient parameterization

- "Hazard rate" is constant for this distribution

$$
\frac{\phi(x)}{1-\Phi(x)}=\lambda
$$

- The mean and standar deviation are both $\frac{1}{\lambda}$
- If $X^{\sim} \exp (\lambda)$ and $y=x^{\theta}$ then y has Frechet Distribution (Eaton kortum 2002).

A convenient parameterization: Facts

(1) If $X^{\sim} \exp (\lambda)$ and $y=k x$ then $y^{\sim} \exp \left(\frac{\lambda}{k}\right)$
(2) If X and Y are independent, $X^{\sim} \exp (\lambda)$ and $Y^{\sim} \exp (\mu)$ then $Z=\min (X, Y) \sim \exp (\lambda+\mu)$
(3) If X and Y are independent, $X^{\sim} \exp (\lambda)$ and $Y^{\sim} \exp (\mu)$ then

$$
\operatorname{Pr}(X<Y)=\frac{\lambda}{\lambda+\mu}
$$

A convenient parameterization

- Apply to DFS
- Let the joint distribution of $\left(x_{H}, x_{F}\right)$ be described by independent exponentials T_{H}, T_{F}.

$$
\begin{aligned}
\mu\left(B_{H}(\omega)\right) & =\operatorname{Pr}\left(\omega x_{H} \leq x_{F}\right) \\
& =\frac{T_{H} / \omega}{T_{H} / \omega+T_{F}}
\end{aligned}
$$

- Imposing into the equilibrium condtions:

$$
\begin{aligned}
\omega & =\frac{\mu\left(B_{H}(\omega)\right)}{1-\mu\left(B_{H}(\omega)\right)} \frac{L_{F}}{L_{H}} \\
& =\frac{T_{H} / \omega}{T_{F}} \frac{L_{F}}{L_{H}}
\end{aligned}
$$

Extension (Eaton Kortum 2002 Framework)

- Suppose $Z=X^{-1 / \theta}$. Then Z has Frechet distribution.
- Suppose productivities are distributed with this Frechet distribution with parameter θ and T_{i}; i.e.

$$
F_{Z_{i}}(z)=\operatorname{Pr}\left(Z_{i} \leq z\right)=\exp \left[-T_{i} z^{-\theta}\right]
$$

Extension (Eaton Kortum 2002 Framework)

- $B_{H}\left(w_{H}, w_{F}\right)=\left\{\left(z_{H}, z_{F}\right) \in R_{++}^{2}: \frac{w_{H}}{z_{H}} \leq \frac{w_{F}}{z_{F}}\right\}$
- It can easily be shown that

$$
\mu\left(B_{H}\left(w_{H}, w_{F}\right)\right)=\frac{T_{H} w_{H}^{-\theta}}{T_{H} w_{H}^{-\theta}+T_{F} w_{F}^{-\theta}}=\frac{T_{H} \omega^{-\theta}}{T_{H} \omega^{-\theta}+T_{H}}
$$

- Thus:

$$
\begin{aligned}
\omega & =\frac{\mu\left(B_{H}(\omega)\right)}{1-\mu\left(B_{H}(\omega)\right)} \frac{L_{F}}{L_{H}} \\
& =\frac{T_{H} \omega^{-\theta}}{T_{F}} \frac{L_{F}}{L_{H}} \\
& \omega=\left(\frac{T_{H}}{T_{F}} \frac{L_{F}}{L_{H}}\right)^{\frac{1}{1+\theta}}
\end{aligned}
$$

Extension (Eaton Kortum 2002 Framework)

- Extending to N countries $1,2, . ., N$
- The probability that country i is the lowest cost supplier to country n

$$
\begin{aligned}
\mu\left(B_{i}\left(w_{1}, . ., w_{N}\right)\right) & \equiv \operatorname{Pr}\left[\frac{w_{i} d_{n i}}{z_{i}} \leq \min _{k \neq i}\left\{\frac{w_{k} d_{n k}}{z_{k}}\right\}\right] \\
& =\frac{T_{i}\left(w_{i} d_{n i}\right)^{-\theta}}{\sum_{k=1}^{N} T_{k}\left(w_{k} d_{n k}\right)^{-\theta}}
\end{aligned}
$$

- Define $\Phi_{n}=\sum_{k=1}^{N} T_{k}\left(w_{k} d_{n k}\right)^{-\theta}$; therefore:

$$
\frac{X_{n i}}{X_{n}}=\frac{T_{i}\left(w_{i} d_{n i}\right)^{-\theta}}{\Phi_{n}}
$$

