Neoclassical Growth Model

Seyed Ali Madanizadeh

Sharif U. of Tech.

September 24, 2023

Neoclasscial Growth Model

- Social Planner problem

$$
\begin{aligned}
V\left(k_{0}\right) & =\max _{\left\{c_{t}, i_{t}\right\}} \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}\right) \\
c_{t}+i_{t} & =f\left(k_{t}\right)=A_{t} k_{t}^{\alpha} \\
k_{t+1} & =(1-\delta) k_{t}+i_{t}
\end{aligned}
$$

- FOCs and the Euler Equation
- The recursive formula using shooting algorithm
- Transition path
- Steady State

Neoclasscial Growth Model

- Dynamic programming framework

$$
\begin{aligned}
V(k) & =\max _{\left\{c_{t}, s_{t}\right\}}\left\{U(c)+\beta V\left(k^{\prime}\right)\right\} \\
c+i & =f(k)=A k^{\alpha} \\
k^{\prime} & =(1-\delta) k+i
\end{aligned}
$$

NGM: Lagrangian

- Social Planner problem

$$
\begin{aligned}
V\left(k_{0}\right) & =\max _{\left\{c_{t}, i_{t}\right\}} \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}\right) \\
c_{t}+k_{t+1} & =A_{t} k_{t}^{\alpha}+(1-\delta) k_{t}
\end{aligned}
$$

- Lagrangian

$$
\Lambda=\sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}\right)+\sum_{t=0}^{\infty} \lambda_{t}\left(A_{t} k_{t}^{\alpha}+(1-\delta) k_{t}-c_{t}-k_{t+1}\right)
$$

NGM: FOCs

- FOCs

$$
\begin{aligned}
{\left[c_{t}\right] } & : \beta^{t} U^{\prime}\left(c_{t}\right)=\lambda_{t} \\
{\left[k_{t+1}\right] } & : \lambda_{t}=\lambda_{t+1}\left(\alpha A_{t+1} k_{t+1}^{\alpha-1}+(1-\delta)\right)
\end{aligned}
$$

- Euler Equation

$$
\frac{\lambda_{t}}{\lambda_{t+1}}=\frac{U^{\prime}\left(c_{t}\right)}{\beta U^{\prime}\left(c_{t+1}\right)}=\alpha A_{t+1} k_{t+1}^{\alpha-1}+(1-\delta)
$$

NGM: Allocation Solution

- Conditions

$$
\begin{aligned}
\frac{U^{\prime}\left(c_{t}\right)}{\beta U^{\prime}\left(c_{t+1}\right)} & =\alpha A_{t+1} k_{t+1}^{\alpha-1}+(1-\delta) \\
c_{t}+k_{t+1} & =A_{t} k_{t}^{\alpha}+(1-\delta) k_{t}
\end{aligned}
$$

- Solve for c_{t}, k_{t+1}

NGM with Constant productivity: Steady State

- Steady State (SS) allocation:

$$
\begin{aligned}
c_{t} & =c \\
k_{t+1} & =k
\end{aligned}
$$

- take $\beta=\frac{1}{1+\rho}$

$$
\begin{aligned}
\frac{U^{\prime}(c)}{\beta U^{\prime}(c)} & =1+\rho=\alpha A k^{\alpha-1}+(1-\delta) \\
k & =\left(\frac{\alpha A}{\rho+\delta}\right)^{\frac{1}{1-\alpha}}
\end{aligned}
$$

NGM with Constant productivity: Steady State

- and

$$
\begin{aligned}
c+k & =A k^{\alpha}+(1-\delta) k \\
c & =A k^{\alpha}-\delta k=A^{\frac{1}{1-\alpha}}\left(\left(\frac{\alpha}{\rho+\delta}\right)^{\frac{\alpha}{1-\alpha}}-\delta\left(\frac{\alpha}{\rho+\delta}\right)^{\frac{1}{1-\alpha}}\right) \\
& =A^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{\rho+\delta}\right)^{\frac{1}{1-\alpha}}\left(\frac{\rho+\delta(1-\alpha)}{\alpha}\right)
\end{aligned}
$$

- output

$$
y=A k^{\alpha}=A^{\frac{1}{1-\alpha}}\left(\frac{\alpha}{\rho+\delta}\right)^{\frac{\alpha}{1-\alpha}}
$$

NGM with Constant productivity: Steady State

- Explain the role of A, k_{0}, ρ, δ

NGM with Constant productivity: Steady State

- Transitional Dynamics Solutions
- Approximation methods: log-linearization, Quadratic approximation, ...
- Numerical methods: Time domain, State domain (DP)

NGM: Transitional Dynamics

- Here, we use Shooting algorithm as a numerical method with time domain
(1) Guess k_{1}.
(2) Solve for c_{t} for $t \geq 0$
(3) Solve for k_{t+1} for $t \geq 1$
(9) Iterate 2,3 for T periods.
(3) If converged to the ε neigborhood of the Steady state, stop,
(0) If not, Update your guess for k_{1} and go to step 2.
- So for each k_{0}, we find unique values c_{0} and k_{1}

NGM: Transitional Dynamics

- In other words: For each k, we find unique function $c_{0}(k)$ and $k_{1}=g(k)$.
- Iterating over this function, we find k_{1}, k_{2}, \ldots and c_{0}, c_{1}, \ldots We converge to the steady state.
- Features and their interpretations:
- Both are Increasing in k.
- Both are increasing in A.
- MPK is decreasing in k.
- Net Investment is decreasing in k.
- Speed of growth is decreasing in k.

NGM: Transitional Dynamics

NGM: Transitional Dynamics

- Shock Analysis:
- Negative shock to k0
- Permanent shock to A
- Temporary shock to A

Representative Agent Model

- HH's problem

$$
\begin{aligned}
V\left(k_{0}\right) & =\max _{\left\{c_{t}, s_{t}\right\}} \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}\right) \\
c_{t}+i_{t} & =w_{t} l_{t}+v_{t} k_{t}+\pi_{t} \\
k_{t+1} & =(1-\delta) k_{t}+i_{t}
\end{aligned}
$$

Take $I_{t}=1$

- Representative Firm's problem

$$
\max \pi_{t}=A F\left(K_{t}, L_{t}\right)-\left(w_{t} L_{t}+v_{t} K_{t}\right)
$$

- Market Clearning

$$
\begin{aligned}
K_{t}^{s} & =K_{t}^{d} \\
L_{t}^{s} & =L_{t}^{d} \\
Y_{t}^{s} & =Y_{t}^{d}=C_{t}+I_{t}
\end{aligned}
$$

- In case of homogeneity: $C_{t}=N c_{t}, I_{t}=N i_{t}, L_{t}=N * 1, K_{t}=N k_{t}$

Representative Agent Model

- HH FOCs

$$
\begin{aligned}
\frac{U^{\prime}\left(c_{t}\right)}{\beta U^{\prime}\left(c_{t+1}\right)} & =1-\delta+v_{t+1} \\
c_{t}+k_{t+1} & =w_{t} * 1+\left(1-\delta+v_{t}\right) k_{t}+\pi_{t}
\end{aligned}
$$

- Firm FOCs

$$
\begin{aligned}
v_{t} & =F_{k}\left(K_{t}, L_{t}\right)=\alpha A K_{t}^{\alpha-1} L_{t}^{1-\alpha}=\alpha A k_{t}^{\alpha-1} \\
w_{t} & =F_{L}\left(K_{t}, L_{t}\right)=(1-\alpha) A K_{t}^{\alpha} L_{t}^{-\alpha}=(1-\alpha) A k_{t}^{\alpha} \\
\pi_{t} & =0 \\
Y_{t} & =w_{t} L_{t}+v_{t} K_{t} \text { and } y_{t}=w_{t} * 1+v_{t} k_{t}
\end{aligned}
$$

Representative Agent Model

- Equilibrium conditions:

$$
\begin{aligned}
\frac{U^{\prime}\left(c_{t}\right)}{\beta U^{\prime}\left(c_{t+1}\right)} & =1-\delta+\alpha A k_{t+1}^{\alpha-1} \\
c_{t}+k_{t+1} & =A k_{t}^{\alpha}+(1-\delta) k_{t}
\end{aligned}
$$

- and prices and other allocations would be

$$
\begin{aligned}
v_{t} & =\alpha A k_{t}^{\alpha-1} \\
w_{t} & =(1-\alpha) A k_{t}^{\alpha} \\
y_{t} & =A k_{t}^{\alpha} \\
i_{t} & =k_{t+1}-(1-\delta) k_{t}
\end{aligned}
$$

Representative Agent Model

- Equilibrium conditions:

$$
\begin{aligned}
\frac{U^{\prime}\left(c_{t}\right)}{\beta U^{\prime}\left(c_{t+1}\right)} & =1-\delta+\alpha A k_{t+1}^{\alpha-1} \\
c_{t}+k_{t+1} & =A k_{t}^{\alpha}+(1-\delta) k_{t}
\end{aligned}
$$

- and prices and other allocations would be

$$
\begin{aligned}
v_{t} & =\alpha A k_{t}^{\alpha-1} \\
w_{t} & =(1-\alpha) A k_{t}^{\alpha} \\
y_{t} & =A k_{t}^{\alpha} \\
i_{t} & =k_{t+1}-(1-\delta) k_{t}
\end{aligned}
$$

Representative Agent Model: Steady State

- SS

$$
\begin{aligned}
\frac{1}{\beta} & =1-\delta+\bar{v} \\
\bar{v} & =\rho+\delta \\
\bar{k} & =\left(\frac{\alpha A}{\rho+\delta}\right)^{\frac{1}{1-\alpha}} \\
w & =(1-\alpha) A k^{\alpha}
\end{aligned}
$$

Representative Agent Model: Transitional Dynamics

- Similar to the Ramsey Model
- $k_{1}=g\left(k_{0}\right) \ldots$.

Representative Agent Model

- Explanation of Spot and Persistency Effects
- Explanation of Autocorrection and recovery mechanisms

Neoclasscial Growth framework: Constant Growth

- Growth:

$$
\begin{aligned}
V\left(k_{0}\right) & =\max _{\left\{c_{t}, s_{t}\right\}} \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}\right) \\
c_{t}+i_{t} & =f\left(k_{t}\right)=A_{t} k_{t}^{\alpha} \\
k_{t+1} & =(1-\delta) k_{t}+i_{t} \\
A_{t} & =(1+g) A_{t-1}
\end{aligned}
$$

- Euler Equation
- Balanced Growth Path
- Transition path
- Steady State

Neoclasscial Growth framework: Constant Growth

- EE:

$$
\frac{U^{\prime}\left(c_{t}\right)}{\beta U^{\prime}\left(c_{t+1}\right)}=1-\delta+\alpha A_{t+1} k_{t+1}^{\alpha-1}=1-\delta+\alpha v_{t+1}
$$

- Balanced Growth Path:

$$
\begin{aligned}
\frac{c_{t}^{-\sigma}}{\beta c_{t+1}^{-\sigma}} & =\frac{1}{\beta}\left(\frac{c_{t+1}}{c_{t}}\right)^{\sigma}=\frac{1}{\beta}\left(1+g_{c}\right)^{\sigma}=(1+\rho)\left(1+g_{c}\right)^{\sigma} \\
v_{t+1} & =(1+\rho)\left(1+g_{c}\right)^{\sigma}-(1-\delta)=\bar{v}
\end{aligned}
$$

- $\bar{v}=\alpha \frac{\bar{y}}{\bar{k}}$. so y and k grow at the same rate. similarly c and i according to the law of motion and the resource constraint. so $g_{y}=g_{k}=g_{i}=g_{c}=\bar{g}$

$$
\begin{aligned}
1+g_{y} & =(1+g)\left(1+g_{k}\right)^{\alpha} \\
1+\bar{g} & =(1+g)^{\frac{1}{1-\alpha}} \text { or } \bar{g}^{\sim} \frac{g}{1-\alpha}
\end{aligned}
$$

- Explanation: Why it is different from SS.

Neoclasscial Growth framework: Constant Growth

- Scale down with $1+\bar{g}$
- Then solve for the transitional dynamics.
- Show the graphical representation.

