Ricardian Model

Seyed Ali Madanizadeh

Sharif U. of Tech.

February 13, 2015

- Ricardian Model setup
- Autarky and free trade Budget constraints
- Comparative Advantage
- Autarky solution
- Free trade solution
- Gains from trade

- Two countries: N(orth), S(outh) : say US and China, ...
- Two commodities: C(omputer), T(extile)
- Identical preferences:

$$U(C, T) = \log(C) + 3\log(T)$$

One immobile factor: Labor

	Labor force
Ν	200
S	1000

• CRS prodution: Labour required to produce one unit of...

	a _T	аc
N labor required	4	4
S labor required	5	10

• Perfect competition

- The N has absolute advantage for both goods: it's more productive in producing either good (less labor required).
- So, why would it ever import anything from the S?
- Let's start w/ autarky and move to free trade.

Opportunity costs

	T relative to C	C relative to T
Ν	1	1
S	$\frac{1}{2}$	2

- *N* has comparative advantage in producing *C*. It produces *C* relatively more cheaply.
- *S* has comparative advantage in producing *T*. It produces *T* relatively more cheaply.

- We'll assume the law of one price holds: identical goods in different location should have the same price if there are no trade barriers → no tariffs, quotas, transaction costs, etc.
- Let P_T = world price of Textile, P_C = world price of Computer.
- The North and South take the world prices as given.

North's Choice

- one unit of North labor can produce:
 - $\frac{1}{4}$ unit of Textile worth $\frac{P_T}{4}$.
 - $\frac{1}{4}$ unit of Computer worth $\frac{P_c}{4}$
- North will specialize in Textile if $\frac{P_T}{4} > \frac{P_C}{4}$ or $\frac{P_T}{P_C} > 1$ and specialize in Computers vice versa.
- North prduce both goods if $\frac{P_T}{P_C} = 1$.

South's Choice

 \ge

- one unit of South labor can produce:
 - $\frac{1}{5}$ unit of Textile worth $\frac{P_T}{5}$.
 - $\frac{1}{10}$ unit of Computer worth $\frac{P_C}{10}$.
- South will specialize in Textile if $\frac{P_T}{5} > \frac{P_C}{10}$ or $\frac{P_T}{P_C} > \frac{1}{2}$ and specialize in Computers vice versa.
- South prduce both goods if $\frac{P_T}{P_C} = \frac{1}{2}$.

- If $0 < \frac{P_T}{P_C} < \frac{1}{2}$ both North and South specialize in Computers. \Rightarrow No trade
- If \$\frac{P_T}{P_C} = \frac{1}{2}\$ North specializes in Computers and South produces both goods.⇒ Trade.
- If ¹/₂ < ^{P_T}/_{P_C} < 1 North specializes in Computers and South specializes in Textiles.⇒ Trade.
- If ^P/_{PC} = 1 North produces both goods and South specializes in Textile⇒ Trade.
- If $1 < \frac{P_T}{P_C}$ both North and South specialize in Textiles. \Rightarrow No trade

Autarky PPF

• North in Autarky

Budget constraint in free trade

North in trade

Autarky PPF

• South in Autarky

• South in trade

$$\max_{C,T} \log (C) + 3 \log (T)$$

s.t. $C = \frac{L_C}{a_C}$
 $T = \frac{L_T}{a_T}$
 $L = L_C + L_T$

Seyed Ali Madanizadeh (Sharif U. of Tech.)

э 15 / 20

æ

- Assume $\frac{1}{2} < \frac{P_T}{P_C} < 1$
- North specialzies in Computers.
 - It produces $\frac{200}{4} = 50$ computers.
 - North's income $= 50P_C$
- South specializes in Textile.
 - It produces $\frac{1000}{5} = 200$ Textiles
 - South's income = $200P_T$

• Problem (*I* = Income):

$$\max_{C,T} \log (C) + 3 \log (T)$$

s.t. $P_C C + P_T T = I$

• FOCs \Rightarrow

$$P_C C = \frac{1}{4}I$$
$$P_T T = \frac{3}{4}I$$

Image: Image:

æ

Free Trade solution

• North:

$$C^{N} = \frac{1}{4} * 50$$
$$T^{N} = \frac{3}{4} * 50 \frac{P_{C}}{P_{T}}$$

• South:

$$C^{S} = \frac{1}{4} * 200 \frac{P_{T}}{P_{C}}$$
$$T^{S} = \frac{3}{4} * 200$$

æ

Image: A matrix

Free Trade solution

• Market Clearing

 \Rightarrow

$$C^N + C^S = 50$$

$$T^N + T^S = 200$$

• It is confirmed that:
$$\frac{1}{4} \times 50 + \frac{1}{4} \times 200 \frac{P_T}{P_C} = 50$$

 $\frac{P_T}{P_C} = 0.75$

3

$$C^{N} = 12.5$$

 $C^{S} = 37.5$
 $T^{N} = 50$
 $T^{S} = 150$
 $\frac{P_{T}}{P_{C}} = 0.75$

æ