Ricardian Model

Seyed Ali Madanizadeh

Sharif U. of Tech.

February 13, 2015

Outline

- Ricardian Model setup
- Autarky and free trade Budget constraints
- Comparative Advantage
- Autarky solution
- Free trade solution
- Gains from trade

Model

- Two countries: N(orth), S(outh) : say US and China, ...
- Two commodities: C(omputer), T(extile)
- Identical preferences:

$$
U(C, T)=\log (C)+3 \log (T)
$$

- One immobile factor: Labor

	Labor force
N	200
S	1000

Labor Requirement

- CRS prodution: Labour required to produce one unit of...

	a_{T}	a_{C}
N labor required	4	4
S labor required	5	10

- Perfect competition

Absolute advantage

- The N has absolute advantage for both goods: it's more productive in producing either good (less labor required).
- So, why would it ever import anything from the S?
- Let's start w/ autarky and move to free trade.

Comparative advantage

- Opportunity costs

	T relative to C	C relative to T
N	1	1
S	$\frac{1}{2}$	2

- N has comparative advantage in producing C. It produces C relatively more cheaply.
- S has comparative advantage in producing T. It produces T relatively more cheaply.

Trade and specialization

- We'll assume the law of one price holds: identical goods in different location should have the same price if there are no trade barriers \rightarrow no tariffs, quotas, transaction costs, etc.
- Let $P_{T}=$ world price of Textile, $P_{C}=$ world price of Computer.
- The North and South take the world prices as given.

Trade and specialization

- North's Choice
- one unit of North labor can produce:
- $\frac{1}{4}$ unit of Textile worth $\frac{P_{T}}{4}$.
- $\frac{1}{4}$ unit of Computer worth $\frac{P_{C}}{4}$
- North will specialize in Textile if $\frac{P_{T}}{4}>\frac{P_{C}}{4}$ or $\frac{P_{T}}{P_{C}}>1$ and specialize in Computers vice versa.
- North prduce both goods if $\frac{P_{T}}{P_{C}}=1$.

Trade and specialization

- South's Choice
- one unit of South labor can produce:
- $\frac{1}{5}$ unit of Textile worth $\frac{P_{T}}{5}$.
- $\frac{1}{10}$ unit of Computer worth $\frac{P_{c}}{10}$.
- South will specialize in Textile if $\frac{P_{T}}{5}>\frac{P_{C}}{10}$ or $\frac{P_{T}}{P_{C}}>\frac{1}{2}$ and specialize in Computers vice versa.
- South prduce both goods if $\frac{P_{T}}{P_{C}}=\frac{1}{2}$.

Trade and specialization

- If $0<\frac{P_{T}}{P_{C}}<\frac{1}{2}$ both North and South specialize in Computers. \Rightarrow No trade
- If $\frac{P_{T}}{P_{C}}=\frac{1}{2}$ North specializes in Computers and South produces both goods. \Rightarrow Trade.
- If $\frac{1}{2}<\frac{P_{T}}{P_{C}}<1$ North specializes in Computers and South specializes in Textiles. \Rightarrow Trade.
- If $\frac{P_{T}}{P_{C}}=1$ North produces both goods and South specializes in Textile \Rightarrow Trade.
- If $1<\frac{P_{T}}{P_{C}}$ both North and South specialize in Textiles. \Rightarrow No trade

Autarky PPF

- North in Autarky

Budget constraint in free trade

- North in trade

Autarky PPF

- South in Autarky

Budget constraint in free trade

- South in trade

Autarky Solution

$$
\begin{aligned}
\max _{C, T} \log (C) & +3 \log (T) \\
\text { s.t. } C & =\frac{L_{C}}{a_{C}} \\
T & =\frac{L_{T}}{a_{T}} \\
L & =L_{C}+L_{T}
\end{aligned}
$$

Free Trade solution

- Assume $\frac{1}{2}<\frac{P_{T}}{P_{C}}<1$
- North specialzies in Computers.
- It produces $\frac{200}{4}=50$ computers.
- North's income $=50 P_{C}$
- South specializes in Textile.
- It produces $\frac{1000}{5}=200$ Textiles
- South's income $=200 P_{T}$

Free Trade solution

- Problem (I = Income):

$$
\begin{aligned}
& \max _{C, T} \log (C)+3 \log (T) \\
& \text { s.t. } P_{C} C+P_{T} T=I
\end{aligned}
$$

- $\mathrm{FOCs} \Rightarrow$

$$
\begin{aligned}
P_{C} C & =\frac{1}{4} I \\
P_{T} T & =\frac{3}{4} I
\end{aligned}
$$

Free Trade solution

- North:

$$
\begin{aligned}
C^{N} & =\frac{1}{4} * 50 \\
T^{N} & =\frac{3}{4} * 50 \frac{P_{C}}{P_{T}}
\end{aligned}
$$

- South:

$$
\begin{aligned}
C^{S} & =\frac{1}{4} * 200 \frac{P_{T}}{P_{C}} \\
T^{S} & =\frac{3}{4} * 200
\end{aligned}
$$

Free Trade solution

- Market Clearing

$$
\begin{aligned}
C^{N}+C^{S} & =50 \\
T^{N}+T^{S} & =200
\end{aligned}
$$

$$
\Rightarrow
$$

$$
\Rightarrow
$$

$$
\frac{1}{4} * 50+\frac{1}{4} * 200 \frac{P_{T}}{P_{C}}=50
$$

$$
\frac{P_{T}}{P_{C}}=0.75
$$

- It is confirmed that: $\frac{1}{2}<\frac{P_{T}}{P_{C}}<1$

Free Trade solution

$$
\begin{aligned}
C^{N} & =12.5 \\
C^{S} & =37.5 \\
T^{N} & =50 \\
T^{S} & =150 \\
\frac{P_{T}}{P_{C}} & =0.75
\end{aligned}
$$

