Monetary Economics Inventory Model

Seyed Ali Madanizadeh

Sharif University of Technology

November 20, 2016

Monetary Economics

- Money Neutrality
- Short run
- Long run
- Schools of thoughts
- Modeling
- Money Demand
- Money Supply
- Money aggregates
- Interest rate targets
- Equilibrium
- Frictionless economies
- Frictional economies

Demnad for Money

- Why do people hold money?
- People hold money to facilitate transactions.
- There are costs to holding money: foregone interest, risk of theft, etc.
- What is the optimal level of money holdings? i.e. how is money demand determined?

Demnad for Money

- Money Demand Models
- Inventory Theory: Baumol Tobin model
- Money in Utility
- Cash in advance model
- Transaction tehnology
- Search models

Inventory Model: A Simple Model of Optimal Cash Management

- Consumer's problem:
- They make consumption purchases totalling $p * c$ every year and these have to be made in cash
- Purchases are spread evenly throughout every day of the year (For simplicity)
- There is a nominal cost of going to the bank/ATM to get money, $\$ \gamma$
- Deposits in the bank earn interest, R.
- The consumer goes to the bank at regular intervals, every T years (For simplicity).
- ex: If $T=\frac{1}{12}$, he/she goes every month
- Frequency $=\#$ of bank visits per year $=\frac{1}{T}$

Inventory Model

Inventory Model

- What is optimal T?
- The consumer will want to minimize costs and also have enough cash at hand for consumption.
- Costs:
- i) bank visits $=\$ \gamma$ per visit.
- ii) foregone interest: R

Inventory Model

- i) Bank visits (transaction cost): Annual (nominal) cost of bank visits $=\gamma * \frac{1}{T}$
- Annual (real) cost of bank visits $=$

$$
\frac{\gamma}{p} * \frac{1}{T}
$$

(Used to be called "shoe leather costs")

Inventory Model

- Foregone interest:
- In each visit, consumer wants to take out just enough cash to cover expenditures until next visit.
- Why? Because by holding too much cash, you lose interest.
- Then the question is: how much will the consumer spend between each trip?
- Recall: We assumed that purchases are spread evenly through every day of the year.

Inventory Model

- Total amount spent between trips $=$

$$
p * c * T
$$

So, you withdraw $p c T$ every time you visit.

- So, is foregone interest $=p c T R$?

Inventory Model

- NO! Because you don't hold all this money that you withdraw for the entire period, you spend it down evenly.
- Average money holdings $=$ half the distance to the peak.

$$
m=\frac{1}{2} p c T
$$

- Average money holdings $=$

$$
\frac{m}{p}=\frac{1}{2} c T
$$

- Avg. real interest foregone $=$

$$
\frac{1}{2} c T R
$$

Inventory Model

- Intuition: As $T \uparrow$, you go to the bank every T years, so less often.
- As $T \uparrow$, transaction costs \downarrow
- As $T \uparrow$, avg. money holdings $\uparrow \Rightarrow$ foregone interest costs \uparrow (bec. you withdraw more in each visit).

Inventory Model

- Optimal T:

- minimize the total cost:

$$
\min _{T} T R C=\frac{\gamma}{p} * \frac{1}{T}+\frac{1}{2} c T R
$$

- $\mathrm{FOC} \Rightarrow$

$$
T^{*}=\sqrt{\frac{2 \gamma}{p c R}}
$$

Inventory Model

- Implications: You go less often (i.e. $T \uparrow$) when
- Transaction costs, $\gamma \uparrow$
- Nominal consumption, pc \downarrow
- Interest rate, $R \downarrow$

Inventory Model

- Money Demand:
- Given T, let's calculate avg. money holdings

$$
\begin{aligned}
\frac{m}{p} & =\frac{1}{2} c T^{*} \\
& =\sqrt{\frac{c \gamma}{2 p R}}
\end{aligned}
$$

Inventory Model

- Let $\gamma_{\text {real }} \equiv \frac{\gamma}{p}$
- Aggregate real money demand (rela money balances):

$$
\begin{aligned}
& \frac{M}{P}=\sqrt{\frac{c \gamma_{\text {real }}}{2 R}} \\
&=\Phi\left(C, R, \gamma_{\text {real }}\right) \\
&(+,-,+)
\end{aligned}
$$

- Financial Innovation goes up: $\downarrow\left(\gamma_{\text {real }}\right) \Rightarrow \frac{M}{P} \downarrow$

Inventory Model

- Define $\bar{\gamma}_{\text {real }}=\frac{\gamma}{p c}($ real γ relative to total consumption (or production))
- Compare to Equation of Exchange

$$
\text { Velocity }=v=\sqrt{\frac{2 R}{\bar{\gamma}_{\text {real }}}}
$$

\Rightarrow Quantity Theory of Money

$$
M v=P Y
$$

Inventory Model

- Supply and Demand of Money

$$
M^{s}=P \Phi\left(Y, R, \gamma_{\text {real }}\right)
$$

- Long run: Flexible prices
- M determines P
- Short run: Sticky prices!
- M determines Y, R

