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Introduction

So far, we have studied games with Nash ( Pure or Mixed)
Equilibria and games with Bayesian perfect Equilibria

Timing
Simultaneous Sequential

In
fo
rm
at
io
n

C
om
pl
et
e

Nash E., pure or mixed ?

In
co
m
pl
et
e

Bayesian Nash E., p. or m. ?
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Introduction

So far, we have focused on games in which any piece of
information that is known by any player is known by all the
players (and indeed common knowledge).

Such games are called the games of complete information.
• In the games with mixed strategies, any of players does
not have informational advantageous, common knowledge.

In real life, players always have some private information
that is not known by other parties.
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Introduction

Example (Payoff with type parameter)
We can hardly know other players’ preferences. Imagine a
situation with two players whose Bernoulli utility functions are
u1(s1, s2, θ1) and u2(s1, s2, θ2). Where the θ1 and θ2, type of
their preferences and are private information.

In these cases a party may have some information that is
not known by some other party.

Such games are called games of incomplete information or
asymmetric information.
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A Motivating Example: Cournot duopoly with asymmetric

information

Example

Recall the Cournot duopoly equilibrium, with b = 1.

Aggregate inverse demand is given by p = a − (q1 + q2),
and the total production cost for the firm 1 is cq1.

Firm 2 can use two technology in production line:
cH q2, and cL q2 with probability of µ and (1− µ),
respectively, where cL < cH .
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A Motivating Example: Cournot duopoly with asymmetric

information

Example

Information is asymmetric: Firm 2 knows its own
technology and that of firm 1’s, but firm 2 its own
production technology and only that firm 2 may use
technology H with probability µ and technology L with
probability 1− µ.

Thus, the probability distribution of the production
technologies and cL < cH are common knowledge
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A Motivating Example: Cournot duopoly with asymmetric

information, cont.
If Firm 2’s cost function is high, it will choose q ∗2(cH ) to
solve firm 2 is:

maxq2 [a − q̄1 − q2 − cH ]q2 (1)

If Firm 2’s cost function is low, it will choose q ∗2(cL ) to
solve firm 2 is:

maxq2 [a − q̄1 − q2 − cL ]q2 (2)

Give the common knowledge about the technology types
of Firm 2, the Firm 1 chooses q ∗1) to solve:

maxq1µ.[a − q1 − q
∗
2(cH )− c ]q1 (3)

+(1− µ).[a − q1 − q ∗2(cL )− c ]q1
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A Motivating Example: Cournot duopoly with asymmetric

information, cont.

The F.O.C for these three objective functions are:

q ∗2(cH ) =
a − q ∗1 − cH

2
(4)

q ∗2(cL ) =
a − q ∗1 − cL

2
(5)

and

q ∗1 =
µ[a − q ∗2(cH )− c ] + (1− µ)[a − q ∗2(cL )− c ]

2
(6)

q ∗1 =
a − c − E [q ∗2 ]

2
The solution for these F.O.Cs ( or reaction functions) are:

Haddad (GSME) Microeconomics II 9 / 50



A Motivating Example: Cournot duopoly with asymmetric

information, cont.

The solution for these F.O.Cs ( or reaction functions) are:

q ∗2(cH ) =
a − 2cH + c

3
+
1− µ
6

(cH − cL ) (7)

q ∗2(cL ) =
a − 2cL + c

3
− µ

6
(cH − cL ) (8)

and q ∗1 =
a − 2c + µcH + (1− µ)cL

3
(9)

q ∗1 =
a − 2c + E [c2]

3
(10)

Why the decision rule q ∗2(cH ) is a function of cL , or q ∗2(cL )
is a function cH ?
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A Motivating Example: Cournot duopoly with asymmetric

information, cont.

Player 2 does know that The Player 1 does not know by
which technology Firm 2 is going to produce.

While Firm 2 deciding about its type choice (H or L), it
takes into account this uncertainty of Firm 1.

How do you compare the solution with those of
Nash-Cournot equilibrium qc = (a − c )/3?

Assume that we have only one type for Firm 2, namely,
c2 = cH = cL and c1 = c for Firm 1.
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Extensive and strategic form of a games with incomplete

information

Example
Prisoners’ Dilemma with Incomplete Information
Consider the modified version of prisoners’ dilemma in
which, with probability µ prisoner 2 has preference (not
rat) θ1 and probability of 1− µ for ratting θ2 on his
accomplice.

Ratting will cause 6 units of dis-utility for P2, he is not a
bad guy!

Set of prisoner 2’s types is Θ2 = {θ1, θ2} = {0,6}, whose
distribution is common knowledge.
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Extensive form of the game
Prisoners’ Dilemma with Incomplete Information , cont.
The extensive form game is represented for the players by
DC and C, which stand for "Don’t Confess " and
"Confess ", respectively
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Strategic form of the game

Prisoners’ Dilemma with Incomplete Information , cont.
Prisoner two has two strategies and two types, we can
represent his strategy function as s2(θ)

His complete contingent plan is:
• C (θ1), C (θ2)
• C (θ1), DC (θ2)
• DC (θ1), C (θ2)
• DC (θ1), DC (θ2)

Recall that types set of P2 is Θ2 = {θ1, θ2} = {0,6}
P2

DC C

P1
DC 0, -2 -10, -1-θ1
C -1, -10 -5, -5-θ1

P2
DC C

P1
DC 0, -2 -10, -1-θ2
C -1, -10 -5, -5-θ2
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Strategic form of the game

Prisoners’ Dilemma with Incomplete Information , cont.
For pedagogical purpose and ease of presentation, I used
two separated payoff matrices to show the
incompleteness of information
Game theory literature, by convention, one payoff matrix
with unknown parameters is used

since one of the players has two types of preference,
applying one notation θ ∈ {0,6} is enough

P2
DC C

P1
DC 0, -2 -10, -1-θ
C -1, -10 -5, -5-θ
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Bayesian Nash Equilibrium

Player i ’s payoff function ui (si , s−i , θi ), where θi ∈ Θi is a
random variable.

The joint distribution of θi ’s is given by F (θ1, ..., θI ), which
is common knowledge among the players

Given the notations, a Bayesian game is represented by:

[I , {Si }, {ui (.)},Θ, F (.)]

Set of all possible types for all players is
Θ = Θ1×, ...,×ΘI
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Bayesian Nash Equilibrium
A Bayesian Nash equilibrium is simply a Nash
equilibrium in a Bayesian game.

Definition (Pure Strategy Bayesian Nash Equilibrium)

In the static Bayesian game [I , {Si }, {ui (.)},Θ, F (.)] the
strategies s ∗ = (s ∗1 , ..., s

∗
I ) are a pure strategy Bayesian Nash

Equilibrium if for each player i and for each of i ’s types
θi ∈ Θi ,types the action s ∗(θi ) solves:

s ∗i (θi ) =

argmax
si∈Si

∑
θ−i∈Θ−i

ui [s ∗1(θ1), ..., , s ∗i−1(θi−1), si , s ∗i+1(θi+1), ...,

s ∗I (θI )|θ̄i ]p (θ−i |θ̄i )

p (θ−i |θ̄i ) = p (θ−i ) if the (θ−i is independent of θi , like the
Pr (θ1) = µ in the prisoner’s dilemma.
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Bayesian Nash Equilibrium
Recall the optimal solution (7) to (10) [I retyped for the
ease of communication in below ], in which Firm 2’s optimal
strategy is depend on its type.
The optimal strategy of firm 1 depends only on the
Expected value of its rival’s types, instead.
Firm 2 will choose either
q ∗2(cH ) = a−2cH+c

3 + 1−µ
6 (cH − cL ) or

q ∗2(cL ) = a−2cL+c
3 − µ

6(cH − cL ), subject to its value
function of profit.

q ∗1 =
a − 2c + µcH + (1− µ)cL

3

q ∗1 =
a − 2c + E [c2]

3
Player 1 has only one type c , therefore she has only one
s ∗1(c ) function of her own type
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Bayesian Nash Equilibrium

For the continuous and i.i.d preference types Θ−i with the
joint density function of f (θ−i ), the conditional expected
utility function for player i in concise form is:

s ∗i (θi ) = argmax
si∈Si

∫
· · ·
∫

Θ−i

ui (si , s ∗−i (θ−i ))|θ̄i )f (θ−i )d θ−i
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Fundamental Theorem of Bayesian Nash Equilibrium

Theorem
A profile of decision rules (s1(.), ..., sI (.)) ( equations 7-9) is a
Bayesian Nash equilibrium game[I , {Si }, {ui (.)},Θ, F (.)] if only
if , for all i and for all θ̄i ∈ Θi occurring with positive probability

Eθ−i [ui (si (θ̄i ), s−i (θ−i ), θ̄i )|θ̄i ] ≥ Eθ−i [ui (s
′
i , s−i (θ−i ), θ̄i )|θ̄i ]

for all s ′i ∈ Si , where the expectation is taken over realization
of the other players’ r.v. [the types, recall equation 3]
conditional on player i ’s realized signal θ̄i .
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Bayesian Nash Equilibrium

Literately, the theorem says, player i chooses the action
that maximizes his expected payoff.

The expected payoff uses conditional distribution of the all
rivals’ types.

Conditional distribution of the types θ is

F (θ−i |θi ) =
F (θi , θ−i )
F (θi )

Which is called in probability theory the Bayes Rule
If the types are independently distributed, (recall the
prisoners’ dilemma), then the conditional probability
distribution function reduces to unconditional,
F (θ−i |θi ) = F (θ−i ).
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Bayesian Nash Equilibrium, prisoners’ dilemma
Rationality requires the prisoner two to play the dominant
strategy for each realized type.

He plays C if θ1 is realized by nature ( the third player) as
his dominant strategy
He plays DC if θ2 is realized by nature as his dominant
strategy

Which strategy should prisoner one choose?
He should compare the expected payoffs of DC and C.

E [u1(s1, s2(.))|s1 = DC ] = (µ)(−10) + (1− µ)(0)

E [u1(s1, s2(.))|s1 = C ] = (µ)(−5) + (1− µ)(−1)

E [u1(s1, s2(.))|s1 = DC ] ≥ E [u1(s1, s2(.))|s1 = C ]

prisoner 1 prefers DC over C if he believes that µ ≤ 16
Haddad (GSME) Microeconomics II 22 / 50



Bayesian Nash Equilibrium, Battle of the Sexes

Example (Battle of the Sexes)

Remember that in the Battle of the Sexes, a husband and a
wife were deciding to go for watching Ballet or Box.
They both would rather spend the evening together than
apart
Now suppose that although they have known each other
for quite some time, Christina and Patrick aren’t sure of
each other’s payoffs

A technical note: p (t < θ̄) =
∫ θ̄
0 (1/x )dx = θ̄/x

Patrick
Ballet θ̄p/x Box (1-θ̄p/x )

Christina Ballet (1-θ̄c/x ) 2+tc , 1 0, 0
Box θ̄c/x 0, 0 1, 2+tp
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Bayesian Nash Equilibrium, Battle of the Sexes

Example (Battle of the Sexes, Cont.)

Suppose that Christina’s payoff if both attend the opera is
2+tc , where tc is privately known by Christina, and
Patrick’s payoff if both attend the Box is 2+tp , where tp is
privately known by Patrick

tc and tp are independent draws from a uniform
distribution on [0, x ].

The action spaces are Ac = Ap = {Ballet ,Box}

The type spaces are Θc = Θp = [0, x ]

Haddad (GSME) Microeconomics II 24 / 50



Bayesian Nash Equilibrium, Battle of the Sexes

Example (Battle of the Sexes, Cont.)

Christina plays Ballet if tc exceeds a critical value θ̄c and
plays Box otherwise.
Patrick plays Box if tp exceeds a critical value θ̄p and plays
Ballet otherwise.
Given Patrick’s strategy, Christina’s expected payoffs from
playing Ballet and Box respectively are:

uc (Ballet , sp (θp )) = (θ̄p/x )(2+ tc ) + 0× (1− θ̄p/x )

uc (Box , sp (θp )) = (θ̄p/x )× 0+ 1× (1− θ̄p/x )

Which action should Christina take to maximize her
expected utility function?
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Bayesian Nash Equilibrium, Battle of the Sexes

Example (Battle of the Sexes, Cont.)

Playing Ballet is only optimal if,

tc ≥ (x/θ̄p )− 3 = θ̄c

In a similar manner one can find Patrick’s expected
payoffs’ from playing Box and Ballet, finally:

tp ≥ (x/θ̄c )− 3 = θ̄p

Solving these two optimal strategies simultaneously leads
to θ̄p = θ̄c and θ̄2p + 3θ̄p − x = 0, θ̄p = −3±

√
9+4x
2

Remember that θi is non-negative, ignore the negative root.
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Bayesian Nash Equilibrium, Battle of the Sexes

Example (Battle of the Sexes, Cont.)

The probability that Christina plays Ballet, namely
(1− θ̄c/x ).
The probability that Patrick plays Box, namely (1− θ̄p/x ).
Solving that quadratic and substituting the solution in
probabilities gives us that

Pr (tc > θ̄c ) = 1− −3+
√
9+ 4x
2x

Which approaches 2/3 as x approaches zero, the mixed
equilibrium!
The players’ behavior in this pure strategy Bayesian Nash
equilibrium of the incomplete-information game
approaches to the mixed-strategy Nash equilibrium in the
original game of complete information.
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Bayesian Nash Equilibrium, Zigger Project

Example (Zigger Project)

Two firms jointly share their research outputs. Each firm
can independently choose to spend c ∈ (0,1) to develop
the zigger, a device that is then made available to the other
firm.

Firm i ’s type is θi , which is believed by firm −i to be
independently drawn from the uniform distribution on
[0,1].

The benefit of the zigger when the type is θi is θ2i .

The timing is: the two firms privately observe their own
type. Then they each simultaneously choose either to
develop the zigger or not.
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Bayesian Nash Equilibrium, Zigger Project

Example (Zigger Project, Cont.)

Value of the zigger to firm i if it use the Zigger but not
provided: θ2i
Payoff if the zigger is not provided: 0
Payoff if it builds the zigger and apply it: θ2i − c
payoff if it does not build the zigger but firm −i does: θ2i
si : [0,1]→ {yes (1), no (0)}
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Bayesian Nash Equilibrium, Zigger Project

Example (Zigger Project, Cont.)

Let p−i = p (s−i (θ−i ) = 1) or [p2 = p (s2(θ2) = 1)]
denotes the probability that firm −i produces the zigger,
given its type θ−i .
Solve for the Pure Strategy Nash Equilibrium
Payoff matrix for game is:

−i
0 1− p−i (s−i = 1) 1 p−i (s−i = 1)

i 0 1− pi (si = 1) 0, 0 θ2i , θ2−i − c
1 pi (si = 1) θ2i − c , θ2−i θ2i − c , θ2−i − c
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Bayesian Nash Equilibrium, Zigger Project

Example (Zigger Project, Cont.)

θi s are i.i.d ∀i ∈ {1,2}, with uniform distribution [0,1]

Firm i should provide the zigger only if payoff from
provision θ2i − c is more than p−i (s−i = 1)θ2i

θ2i − c ≥ p−i (s−i = 1)θ2i

Equivalently, θi ≥
√

c
1−p−i (s−i=1)

Suppose that firm i and −i use a cutoff strategy, θ̂i and
θ̂−i

Technical note:
∫ θ̂i
0 d θi = θ̂i which is the probability of not

developing the Zigger by i
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Bayesian Nash Equilibrium, Zigger Project

Example (Zigger Project, Cont.)

Then, firm i will provide the zigger with probability
1− θ̂i = 1−

√
c

1−p−i (s−i=1) = 1−
√
c
θ̂−i

Therefore θ̂i =
√
c/θ̂−i

That is, θ̂2i .θ̂−i = c
and symmetrically, θ̂2−i .θ̂i = c

Canceling, θ̂i = θ̂−i , Thus, the only BNE is symmetric.
Substituting into the equation above:θ̂i = θ̂−i = c 1/3
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Bayesian Nash Equilibrium, Zigger Project

Example (Zigger Project, Cont.)

When firm i can make free riding?
The zigger should be provided by one of the two firms if
θ2i ≥ c , then θi ≤ c 1/2.
Given that c ∈ (0,1), we have that c 1/2 < c 1/3.

Figure: Uniform distribution function with θ ∈ [0,1]
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Bayesian Nash Equilibrium, War of attrition

Example (War of attrition)

A war of attrition is a situation where two players compete
to see which is the first to quit the game.

The player who stays longest wins the prize

Wars of attrition occur in animal behavior (fighting over a
territory), human behavior (see who stays the longest),
interaction among firms (wait for another firm to exit an
industry..)

Formally, a war of attrition is like a second price auction
where both the winner and the loser pay (this is called an
all-pay auction )
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Bayesian Nash Equilibrium, War of attrition

Example (War of attrition, Cont.)

Suppose that players have a benefit from surviving the war
of attrition, θi which is privately known.
The value θi is distributed independently according to
some distribution law, for example p (.)

Each player i , j chooses a time si as a function of θi to exit.
players decide about the value of si and sj at the beginning
of the game, but keep it as a private information
Payoffs are:

ui (si , sj , θi ) =

{
−si if si ≤ sj
θi − sj if si > sj

(11)
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Bayesian Nash Equilibrium, War of attrition

Example (War of attrition, Cont.)

What is the equilibrium strategy for player i ? Basically, it
comes form maximization of player’s expected payoff
respect to the strategy si , given her type.
Expected payoffs for player i is:

E [ui (si , θj |θi )] = −si .Pr [si ≤ sj (θj )] (12)

+

∫
θj |si>sj (θj )

(θi − sj (θj ))f (θj |θi )d θj

We are looking for the s ∗i (θi ) of this game which
maximizes the conditional expected utility of player i .
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Bayesian Nash Equilibrium, War of attrition

Example (War of attrition, Cont.)

The (pure-strategy) Bayesian equilibrium (si (.), sj (.)) of
this game. For each θi , our derived strategy must satisfy
si (θi ) the following optimization problem:

s ∗i (θi ) ∈ argmax
si
{−si .Pr [si ≤ sj (θj )]

+

∫
θj |si>sj (θj )

(θi − sj (θj ))f (θj |θi )d θj }

Let’s assume that si (.) is an increasing and continuous
function of θi
Then, the inverse function of si = si (θi ) is re-presentable
by θi = Φi (si ), and si ≤ sj (θj ) is transformed to
Φj (si ) ≤ θj .
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Bayesian Nash Equilibrium, War of attrition

Example (War of attrition, Cont.)

s ∗i (θi ) ∈ argmax
si
{−si .[1− Pj (Φj (si ))]

+

∫ si
0

(θi − sj )fj (Φj (sj ))Φ′j (sj )dsj } (13)

Technical remarks
• If f (x ) and x = g (z ), then f (z ) = f (g−1(x )).|dz/dx |. So
this clarifies why the Φ′j (sj ) appears in (13).

• θi in independent of θj , therefore f (θj |θi ) = f (θj )

• d
dx
∫ x
0 f (t )dt = f (x )

• Derivative of first element of the objective function is:
d {−si .[1−Pj (Φj (si ))]}

dsi = −[1− Pj (Φj (si ))] +si fj (Φj (si ))Φ′j (si )
• Derivative of second element of the objective function is:

(Φi (si )− si )f (Φj (si ))Φ′i (si ), where θi = Φi (si )
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Bayesian Nash Equilibrium, War of attrition

Example (War of attrition, Cont.)

F.O.C for the above maximization programming respect to
the (upper limit of integral) decision variable si is:

[1− Pj (Φj (si ))]− Φi (si )fj (Φi (si ))Φ′i (si ) = 0 (14)

First term shows the marginal cost of an incremental
change in si and the second one is its marginal benefit.
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Bayesian Nash Equilibrium, War of attrition

Example (War of attrition, Cont.)

Suppose that P1 = P2 = P and we are looking for a
symmetric equilibrium.
Substituting θ = Φ(s ) in equation (14), and using the fact
that Φ′ = 1/s ′, we have

s ′(θ) =
θf (θ)

1− P (θ)

or

s (θ) =

∫ θ

0

(
xf (x )

1− P (x )

)
dx

Type with 0 value for the good are unwilling to fight for it,
thus the lower limit of the integral equals zero.
The optimal Bayesian Nash strategy is a function of θ, as
the PBNE definition implies.
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Bayesian Nash Equilibrium, War of attrition

Example (War of attrition, Cont.)

As an example, one can take the P (θ) = 1− exp (−θ), then
the optimal strategy would be s (θ) = θ2

2 , which is a
function of player’s type θ.
Examine the ranges of type for θ < 2 and θ > 2. It is clear
that for the latter s (θ) > θ.
See Fudenberg and Tirol, page 219.
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Bayesian Nash Equilibrium, Public goods provision

Example (Public goods provision)

Consider the following game of public good provision with
private costs ci ≥ 0, with following payoff matrix:

Player 2

Contribute Don’t
Contribute

Player 2 Contribute 1-c1, 1-c2 1-c1, 1
Don’t Contribute 1, 1-c2 0, 0

The cost ci is i.i.d. distributed with a uniform density on
Θi = [0,2], or F (ci ) =

∫ ci
0

1
2−0d θi .
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Bayesian Nash Equilibrium, Public goods provision

Example (Public goods provision cont.)

Let type ci of player i contributing be denoted by
si (ci ) = 1, and not contributing by si (ci ) = 0.
Then net utility is:

ui (s1(c1), s2(c2), c1, c2) = max{s1(c1), s2(c2)} − ci .si (ci )

Mixed strategy σi for player i in this game is given by
σi : Θi → ∆(Si )
Where Θi = [0,2] and Si = {0,1}
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Bayesian Nash Equilibrium, Public goods provision

Example (Public goods provision cont.)

1 Compute a Bayesian Nash equilibrium of this game in pure
strategies.

• A strategy profile s ∗i is a (pure strategy) BNE if s ∗i (ci )
maximizes

s ∗i (ci ) = argmaxsi∈Si Ec−imax{si , σ∗(c−i )} − ci .si

for all ci and all i .
• payoff from choosing s ∗i (ci ) = 1 is 1− ci and the payoff
from choosing s ∗i (ci ) = 0 is
p (s ∗−i (c−i ))× 1+ (1− p (s ∗−i (c−i ))× 0 = p (s ∗−i (c−i ).

• Thus, the payoff from si = 1 is decreasing in ci = 1 and the
payoff of si is independent of ci .
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Bayesian Nash Equilibrium, Public goods provision

Example (Public goods provision cont.)
• Hence, look at monotonic cutoff strategies of the form

si (ci ) =

{
1 if ci ≤ c ∗

0 if ci > c ∗
(15)

• Type c ∗of player i must be indifferent between
contributing and not, so

1− c ∗ = p (s ∗−i (c−i ) = 1) = p (c−i ≤ c ∗) =
c ∗

2

or c ∗ = 2
3 . Where, remember from the i.i.d and uniform

distribution of types that,∫ c∗
0

1
2
d θi =

c ∗

2
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Mixed Strategies in Bayesian Nash Equilibrium

Therefore, all players with private cost below 2
3

contribute, while players with ci > 2
3 do not.

Definition (Bayesian equilibrium with Mixed Strategie)

A Bayesian equilibrium with Mixed Strategies of a Bayesian
game [I , {∆(Si )}, {ui (.)},Θ, F (.)] is a mixed strategy profiles
σ = (σi , σ−i ), such that for every player i and every type
θ ∈ Θi , we have

σi (.|θ) ∈ argmaxσi∈∆(Si )F (θ−i |θi )Σs∈S [Πj 6=i σj (sj |θj )]σi (si )ui (s |θ)
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Mixed Strategies in Bayesian Nash Equilibrium

Example (Battle of Sexes with mixed Strategies)

Battle of Sexes with incomplete information
P2 type l
B S

P1
B 2, 1 0, 0
S 0, 0 1, 2

P2 type h
B S

P1
B 2, 0 0, 2
S 0, 1 1, 0

in the game type l has two pyre Nash equilibria, while the
type h has no pure equilibrium
We need to mix among the strategies
I = {1,2}, S1 = S1 = {A ,S }
Θ1 = {x}, Θ = {l , h }
F1(l |x ) = F1(h |x ) = 1/2, F2(x |l ) = F2(x |h ) = 1
Player 1 mixes with probability σ1(B |x ) and 1− σ1(B |x )
between B and S, respectively.
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Mixed Strategies in Bayesian Nash Equilibrium

Example (Battle of Sexes with mixed Strategies, Cont.)

If player 2’s type is h , he mixes with probability σ2(B |l )
and 1− σ2(B |l ) between B and S
If player 2’s type is h , he mixes with probability σ2(B |h )
and 1− σ2(B |h ) between B and S
Expected utility of player 1 is:
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Mixed Strategies in Bayesian Nash Equilibrium

Example (Battle of Sexes with mixed Strategies, Cont.)

Expected utility of player 1 for the above setting is:

U1(σ, x ) = F1(l |x )σ2(B |l )σ1(B |x )u1(B (x ),B (l ), l , h , x )

+F1(l |x )σ2(S |l )σ1(B |x )u1(B (x ),S (l ), l , h , x )

+F1(h |x )σ2(B |h )σ1(B |x )u1(B (x ),B (h ), l , h , x )

+F1(h |x )σ2(S |h )σ1(B |x )u1(B (x ),S (h ), l , h , x )

+F1(l |x )σ2(B |l )σ1(S |x )u1(S (x ),B (l ), l , h , x )

+F1(l |x )σ2(S |l )σ1(S |x )u1(S (x ),S (l ), l , h , x )

+F1(h |x )σ2(B |h )σ1(S |x )u1(S (x ),B (h ), l , h , x )

+F1(h |x )σ2(S |h )σ1(S |x )u1(S (x ),S (h ), l , h , x )
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Mixed Strategies in Bayesian Nash Equilibrium

Example (Battle of Sexes with mixed Strategies, Cont.)

Player 1’s expected payoff: Given player 2’s strategy
σ2(B |l ) and σ2(B |h ) , her expected payoff to:

• action B (of P1) is
1
2
σ2(B (l ))(2) +

1
2
σ2(B (h ))(2) = σ2(B (l )) + σ2(B (h ))

• action S (of P1) is
1
2

(1− σ2)(B (l )(2) +
1
2

(1− σ2(B (h ))(2))

= 1− σ2(B (l )) + σ2(B (h ))

2
Therefore, her best response is to play B if
σ2(B (l )) + σ2(B (h )) > 2

3 and to play S if
σ2(B (l )) + σ2(B (h )) < 2

3 .
Find P2’s expected payoff and the best response function.
His best response is to play B if σ1(B ) < 1

3 .
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