

STATIC GAMES WITH INCOMPLETE INFORMATION

GholamReza Keshavarz Haddad

Sharif University of Technology Graduate School of Management and Economics

April 13, 2020

HADDAD (GSME)

Microeconomics II 1 / 50

OUTLINE

INTRODUCTION A Motivating Example

2 EXTENSIVE AND STRATEGIC FORMS OF A GAME WITH INCOMPLETE INFORMATION

3 BAYESIAN NASH EQUILIBRIUM

HADDAD (GSME)

Microeconomics II 2 / 50

INTRODUCTION

 So far, we have studied games with Nash (Pure or Mixed) Equilibria and games with Bayesian perfect Equilibria

		Timing	
		Simultaneous	Sequential
Information	Complete	Nash E., pure or mixed	?
	Incomplete	Bayesian Nash E., p. or m.	?

INTRODUCTION

- So far, we have focused on games in which any piece of information that is known by any player is known by all the players (and indeed common knowledge).
- Such games are called the games of complete information.
 - In the games with mixed strategies, any of players does not have informational advantageous, common knowledge.
- In real life, players always have some private information that is not known by other parties.

EXAMPLE (PAYOFF WITH TYPE PARAMETER)

We can hardly know other players' preferences. Imagine a situation with two players whose Bernoulli utility functions are $u_1(s_1, s_2, \theta_1)$ and $u_2(s_1, s_2, \theta_2)$. Where the θ_1 and θ_2 , type of their preferences and are private information.

- In these cases a party may have some information that is not known by some other party.
- Such games are called games of incomplete information or asymmetric information.

A Motivating Example: Cournot duopoly with asymmetric information

EXAMPLE

- **•** Recall the Cournot duopoly equilibrium, with b = 1.
- Aggregate inverse demand is given by $p = a (q_1 + q_2)$, and the total production cost for the firm 1 is cq_1 .
- Firm 2 can use two technology in production line: $c_H q_2$, and $c_L q_2$ with probability of μ and (1μ) , respectively, where $c_L < c_H$.

EXAMPLE

- Information is asymmetric: Firm 2 knows its own technology and that of firm 1's, but firm 2 its own production technology and only that firm 2 may use technology *H* with probability µ and technology *L* with probability 1 − µ.
- Thus, the probability distribution of the production technologies and c_L < c_H are common knowledge

■ If Firm 2's cost function is high, it will choose $q_2^*(c_H)$ to solve firm 2 is:

$$max_{q_2} [a - \bar{q_1} - q_2 - c_H]q_2$$
 (1)

■ If Firm 2's cost function is low, it will choose q₂^{*}(c_L) to solve firm 2 is:

$$max_{q_2} \ [a - \bar{q_1} - q_2 - c_L]q_2$$
 (2)

■ Give the common knowledge about the technology types of Firm 2, the Firm 1 chooses *q*₁^{*}) to solve:

$$max_{q_1}\mu.[a - q_1 - q_2^*(c_H) - c]q_1$$
 (3)

$$+(1-\mu).[a-q_1-q_2^*(c_L)-c]q_1$$

HADDAD (GSME)

Microeconomics II 8 / 50

The F.O.C for these three objective functions are:

$$q_{2}^{*}(c_{H}) = \frac{a - q_{1}^{*} - c_{H}}{2}$$
(4)
$$q_{2}^{*}(c_{L}) = \frac{a - q_{1}^{*} - c_{L}}{2}$$
(5)

and

$$q_{1}^{*} = \frac{\mu[a - q_{2}^{*}(c_{H}) - c] + (1 - \mu)[a - q_{2}^{*}(c_{L}) - c]}{2} \quad (6)$$
$$q_{1}^{*} = \frac{a - c - E[q_{2}^{*}]}{2}$$

■ The solution for these F.O.Cs (or reaction functions) are:

The solution for these F.O.Cs (or reaction functions) are:

$$q_2^*(c_H) = \frac{a - 2c_H + c}{3} + \frac{1 - \mu}{6}(c_H - c_L)$$
(7)

$$q_2^*(c_L) = \frac{a - 2c_L + c}{3} - \frac{\mu}{6}(c_H - c_L)$$
(8)

and
$$q_1^* = \frac{a - 2c + \mu c_H + (1 - \mu)c_L}{3}$$
 (9)

$$q_1^* = \frac{a - 2c + E[c_2]}{3} \tag{10}$$

• Why the decision rule $q_2^*(c_H)$ is a function of c_L , or $q_2^*(c_L)$ is a function c_H ?

- Player 2 does know that The Player 1 does not know by which technology Firm 2 is going to produce.
- While Firm 2 deciding about its type choice (H or L), it takes into account this uncertainty of Firm 1.
- How do you compare the solution with those of Nash-Cournot equilibrium $q_c = (a c)/3$?
- Assume that we have only one type for Firm 2, namely, $c_2 = c_H = c_L$ and $c_1 = c$ for Firm 1.

EXTENSIVE AND STRATEGIC FORM OF A GAMES WITH INCOMPLETE INFORMATION

EXAMPLE

Prisoners' Dilemma with Incomplete Information

- Consider the modified version of prisoners' dilemma in which, with probability µ prisoner 2 has preference (not rat) θ₁ and probability of 1 − µ for ratting θ₂ on his accomplice.
- Ratting will cause 6 units of dis-utility for P2, he is not a bad guy!
- Set of prisoner 2's types is Θ₂ = {θ₁, θ₂} = {0, 6}, whose distribution is common knowledge.

EXTENSIVE FORM OF THE GAME

Prisoners' Dilemma with Incomplete Information , cont.

The extensive form game is represented for the players by DC and C, which stand for "Don't Confess" and "Confess", respectively

HADDAD (GSME)

Microeconomics II 13 / 50

STRATEGIC FORM OF THE GAME

Prisoners' Dilemma with Incomplete Information , cont.

- Prisoner two has two strategies and two types, we can represent his strategy function as s₂(θ)
- His complete contingent plan is:
 - *C*(*θ*₁), *C*(*θ*₂)
 - C(θ₁), DC(θ₂)
 - *DC*(*θ*₁), *C*(*θ*₂)
 - *DC*(θ₁), *DC*(θ₂)

• Recall that types set of **P2** is $\Theta_2 = \{\theta_1, \theta_2\} = \{0, 6\}$

STRATEGIC FORM OF THE GAME

Prisoners' Dilemma with Incomplete Information , cont.

- For pedagogical purpose and ease of presentation, I used two separated payoff matrices to show the incompleteness of information
- Game theory literature, by convention, one payoff matrix with unknown parameters is used
- since one of the players has two types of preference, applying one notation $\theta \in \{0, 6\}$ is enough

- Player *i*'s payoff function $u_i(s_i, s_{-i}, \theta_i)$, where $\theta_i \in \Theta_i$ is a random variable.
- The joint distribution of θ_i 's is given by $F(\theta_1, ..., \theta_l)$, which is common knowledge among the players
- Given the notations, a Bayesian game is represented by:

 $[I, \{S_i\}, \{u_i(.)\}, \Theta, F(.)]$

• Set of all possible types for all players is $\Theta = \Theta_1 \times, ..., \times \Theta_I$

A Bayesian Nash equilibrium is simply a Nash equilibrium in a Bayesian game.

DEFINITION (PURE STRATEGY BAYESIAN NASH EQUILIBRIUM)

In the static Bayesian game $[I, \{S_i\}, \{u_i(.)\}, \Theta, F(.)]$ the strategies $s^* = (s_1^*, ..., s_i^*)$ are a pure strategy Bayesian Nash Equilibrium if for each player *i* and for each of *i*'s types $\theta_i \in \Theta_i$, types the action $s^*(\theta_i)$ solves:

$$\underset{s_{i} \in S_{i}}{\operatorname{argmax}} \sum_{\boldsymbol{\theta}_{-i} \in \Theta_{-i}} u_{i}[s_{1}^{*}(\boldsymbol{\theta}_{1}), ..., s_{i-1}^{*}(\boldsymbol{\theta}_{i-1}), s_{i}, s_{i+1}^{*}(\boldsymbol{\theta}_{i+1}), ..., s_{i}^{*}(\boldsymbol{\theta}_{i})|\bar{\theta}_{i}]\rho(\boldsymbol{\theta}_{-i}|\bar{\theta}_{i})$$

 $s_i^*(\theta_i) =$

• $p(\theta_{-i}|\bar{\theta}_i) = p(\theta_{-i})$ if the $(\theta_{-i}$ is independent of θ_i , like the $Pr(\theta_1) = \mu$ in the prisoner's dilemma.

HADDAD (GSME)

Microeconomics II 17 / 50

- Recall the optimal solution (7) to (10) [*I retyped for the ease of communication in below*], in which Firm 2's optimal strategy is depend on its type.
- The optimal strategy of firm 1 depends only on the Expected value of its rival's types, instead.

Firm 2 will choose either

$$q_2^*(c_H) = \frac{a-2c_H+c}{3} + \frac{1-\mu}{6}(c_H - c_L)$$
 or
 $q_2^*(c_L) = \frac{a-2c_L+c}{3} - \frac{\mu}{6}(c_H - c_L)$, subject to its value
function of profit.

$$q_1^* = rac{a - 2c + \mu c_H + (1 - \mu)c_L}{3}$$

$$q_1^* = \frac{a-2c+E[c_2]}{3}$$

Player 1 has only one type c, therefore she has only one $s_1^*(c)$ function of her own type

HADDAD (GSME)

Microeconomics II

18 / 50

• For the continuous and i.i.d preference types Θ_{-i} with the joint density function of $f(\theta_{-i})$, the conditional expected utility function for player *i* in concise form is:

$$s_i^*(\theta_i) = \operatorname*{argmax}_{s_i \in S_i} \int \cdots \int_{\Theta_{-i}} u_i(s_i, s_{-i}^*(\theta_{-i})) |\overline{\theta}_i) f(\theta_{-i}) d\theta_{-i}$$

THEOREM

A profile of decision rules $(s_1(.), ..., s_l(.))$ (equations 7-9) is a Bayesian Nash equilibrium game $[I, \{S_i\}, \{u_i(.)\}, \Theta, F(.)]$ if only if, for all i and for all $\overline{\theta}_i \in \Theta_i$ occurring with positive probability

 $E_{\theta_{-i}}[u_i(s_i(\bar{\theta}_i), s_{-i}(\theta_{-i}), \bar{\theta}_i)|\bar{\theta}_i] \geq E_{\theta_{-i}}[u_i(s_i', s_{-i}(\theta_{-i}), \bar{\theta}_i)|\bar{\theta}_i]$

for all $s'_i \in S_i$, where the expectation is taken over realization of the other players' r.v. [the types, recall equation 3] conditional on player i's realized signal $\bar{\theta}_i$.

- Literately, the theorem says, player *i* chooses the action that maximizes his expected payoff.
- The expected payoff uses conditional distribution of the all rivals' types.
- Conditional distribution of the types θ is

$$F(heta_{-i}| heta_i) = rac{F(heta_i, heta-i)}{F(heta_i)}$$

Which is called in probability theory the **Bayes Rule**

■ If the types are independently distributed, (recall the prisoners' dilemma), then the conditional probability distribution function reduces to unconditional, $F(\theta_{-i}|\theta_i) = F(\theta_{-i})$.

BAYESIAN NASH EQUILIBRIUM, PRISONERS' DILEMMA

- Rationality requires the prisoner two to play the dominant strategy for each realized type.
- He plays C if θ_1 is realized by nature (the third player) as his dominant strategy
- He plays *DC* if θ₂ is realized by nature as his dominant strategy
- Which strategy should prisoner one choose?
- He should compare the expected payoffs of *D*C and *C*.

$$E[u_1(s_1, s_2(.))|s_1 = DC] = (\mu)(-10) + (1 - \mu)(0)$$
$$E[u_1(s_1, s_2(.))|s_1 = C] = (\mu)(-5) + (1 - \mu)(-1)$$

 $E[u_1(s_1, s_2(.))|s_1 = DC] \ge E[u_1(s_1, s_2(.))|s_1 = C]$

• prisoner 1 prefers *DC* over *C* if he believes that $\mu \leq \frac{1}{6}$

HADDAD (GSME)

BAYESIAN NASH EQUILIBRIUM, BATTLE OF THE SEXES EXAMPLE (BATTLE OF THE SEXES)

- Remember that in the Battle of the Sexes, a husband and a wife were deciding to go for watching *Ballet* or *Box*.
- They both would rather spend the evening together than apart
- Now suppose that although they have known each other for quite some time, Christina and Patrick aren't sure of each other's payoffs

• A technical note:
$$ho(t < ar{ heta}) = \int_0^{ar{ heta}} (1/x) dx = ar{ heta}/x$$

			Patrick		
			Ballet $\bar{\theta}_p/x$	Box $(1-\overline{\theta}_p/x)$	
Christina	Ballet	$(1-\overline{\theta}_c/x)$	2+ <i>t_c</i> , 1	0, 0	
	Box	$\bar{\theta}_c/x$	0, 0	1, 2+ <i>t</i> _p	

23 / 50

BAYESIAN NASH EQUILIBRIUM, BATTLE OF THE SEXES

EXAMPLE (BATTLE OF THE SEXES, CONT.)

- Suppose that Christina's payoff if both attend the opera is $2+t_c$, where t_c is privately known by Christina, and Patrick's payoff if both attend the Box is $2+t_p$, where t_p is privately known by Patrick
- *t_c* and *t_p* are independent draws from a uniform distribution on [0, *x*].
- The action spaces are $A_c = A_p = \{Ballet, Box\}$

• The type spaces are
$$\Theta_c = \Theta_p$$
 = [0, x]

HADDAD (GSME)

BAYESIAN NASH EQUILIBRIUM, BATTLE OF THE SEXES

EXAMPLE (BATTLE OF THE SEXES, CONT.)

- Christina plays *Ballet* if t_c exceeds a critical value $\bar{\theta}_c$ and plays *Box* otherwise.
- Patrick plays *Box* if t_p exceeds a critical value $\bar{\theta}_p$ and plays *Ballet* otherwise.
- Given Patrick's strategy, Christina's expected payoffs from playing *Ballet* and *Box* respectively are:

$$u_c(Ballet, s_p(\theta_p)) = (\overline{\theta}_p/x)(2 + t_c) + 0 \times (1 - \overline{\theta}_p/x)$$

$$u_c(Box, s_{\rho}(\theta_{\rho})) = (\bar{\theta}_{\rho}/x) \times 0 + 1 \times (1 - \bar{\theta}_{\rho}/x)$$

Which action should Christina take to maximize her expected utility function?

BAYESIAN NASH EQUILIBRIUM, BATTLE OF THE SEXES

EXAMPLE (BATTLE OF THE SEXES, CONT.)

Playing *Ballet* is only optimal if,

$$t_c \ge (x/\bar{\theta}_p) - 3 = \bar{\theta}_c$$

In a similar manner one can find Patrick's expected payoffs' from playing *Box* and *Ballet*, finally:

$$t_{
ho} \geq (x/\bar{ heta}_c) - 3 = \bar{ heta}_{
ho}$$

- Solving these two optimal strategies simultaneously leads to $\bar{\theta}_{\rho} = \bar{\theta}_{c}$ and $\bar{\theta}_{\rho}^{2} + 3\bar{\theta}_{\rho} x = 0$, $\bar{\theta}_{\rho} = \frac{-3\pm\sqrt{9+4x}}{2}$
- **Remember** that θ_i is non-negative, ignore the negative root.

BAYESIAN NASH EQUILIBRIUM, BATTLE OF THE SEXES EXAMPLE (BATTLE OF THE SEXES, CONT.)

- The probability that Christina plays *Ballet*, namely $(1 \bar{\theta}_c/x)$.
- The probability that Patrick plays *Box*, namely $(1 \bar{\theta}_p / x)$.
- Solving that quadratic and substituting the solution in probabilities gives us that

$$Pr(t_c > \bar{\theta}_c) = 1 - \frac{-3 + \sqrt{9 + 4x}}{2x}$$

- Which approaches 2/3 as x approaches zero, the mixed equilibrium!
- The players' behavior in this pure strategy Bayesian Nash equilibrium of the incomplete-information game approaches to the mixed-strategy Nash equilibrium in the original game of complete information.

```
HADDAD (GSME)
```

Microeconomics II 27 / 50

Bayesian Nash Equilibrium, Zigger Project Example (Zigger Project)

- Two firms jointly share their research outputs. Each firm can independently choose to spend $c \in (0, 1)$ to develop the *zigger*, a device that is then made available to the other firm.
- Firm *i*'s type is θ_i, which is believed by firm -*i* to be independently drawn from the uniform distribution on [0, 1].
- The benefit of the *zigger* when the type is θ_i is θ_i^2 .
- The timing is: the two firms privately observe their own type. Then they each simultaneously choose either to develop the *zigger* or not.

HADDAD (GSME)

Microeconomics II 28 / 50

BAYESIAN NASH EQUILIBRIUM, ZIGGER PROJECT

EXAMPLE (ZIGGER PROJECT, CONT.)

- Value of the *zigger* to firm *i* if it use the Zigger but not provided: θ²_i
- Payoff if the zigger is not provided: 0
- Payoff if it builds the *zigger* and apply it: $\theta_i^2 c$
- payoff if it does not build the *zigger* but firm -i does: θ_i^2

•
$$s_i : [0, 1] \to \{yes(1), no(0)\}$$

BAYESIAN NASH EQUILIBRIUM, ZIGGER PROJECT

EXAMPLE (ZIGGER PROJECT, CONT.)

- Let $p_{-i} = p(s_{-i}(\theta_{-i}) = 1)$ or $[p_2 = p(s_2(\theta_2) = 1)]$ denotes the probability that firm -i produces the *zigger*, given its type θ_{-i} .
- Solve for the Pure Strategy Nash Equilibrium
- Payoff matrix for game is:

$$\begin{array}{c|c} -i \\ \hline 0 & 1 - p_{-i}(s_{-i} = 1) & 1 & p_{-i}(s_{-i} = 1) \\ i & 0 & 1 - p_i(s_i = 1) & 0, 0 & \theta_i^2, \theta_{-i}^2 - c \\ \hline 1 & p_i(s_i = 1) & \theta_i^2 - c, \theta_{-i}^2 & \theta_i^2 - c, \theta_{-i}^2 - c \end{array}$$

BAYESIAN NASH EQUILIBRIUM, ZIGGER PROJECT EXAMPLE (ZIGGER PROJECT, CONT.)

- θ_i s are *i.i.d* $\forall i \in \{1, 2\}$, with uniform distribution [0, 1]
- Firm *i* should provide the *zigger* only if payoff from provision $\theta_i^2 c$ is more than $p_{-i}(s_{-i} = 1)\theta_i^2$

$$heta_i^2 - c \geq p_{-i}(s_{-i} = 1) heta_i^2$$

- Equivalently, $\theta_i \ge \sqrt{\frac{c}{1-p_{-i}(s_{-i}=1)}}$
- Suppose that firm *i* and -i use a cutoff strategy, $\hat{\theta}_i$ and $\hat{\theta}_{-i}$
- Technical note: $\int_0^{\hat{\theta}_i} d\theta_i = \hat{\theta}_i$ which is the probability of not developing the *Zigger* by *i*

BAYESIAN NASH EQUILIBRIUM, ZIGGER PROJECT

EXAMPLE (ZIGGER PROJECT, CONT.)

- Then, firm *i* will provide the *zigger* with probability $1 - \hat{\theta}_i = 1 - \sqrt{\frac{c}{1 - \rho_{-i}(s_{-i} = 1)}} = 1 - \sqrt{\frac{c}{\hat{\theta}_{-i}}}$
- Therefore $\hat{\theta}_i = \sqrt{c/\hat{\theta}_{-i}}$
- That is, $\hat{\theta}_i^2 . \hat{\theta}_{-i} = c$
- and symmetrically, $\hat{\theta}_{-i}^2 \cdot \hat{\theta}_i = c$
- Canceling, $\hat{\theta}_i = \hat{\theta}_{-i}$, Thus, the only BNE is symmetric.
- Substituting into the equation above: $\hat{\theta}_i = \hat{\theta}_{-i} = c^{1/3}$

BAYESIAN NASH EQUILIBRIUM, ZIGGER PROJECT EXAMPLE (ZIGGER PROJECT, CONT.)

- When firm i can make free riding?
- The zigger should be provided by one of the two firms if $\theta_i^2 \ge c$, then $\theta_i \le c^{1/2}$.
- Given that $c \in (0, 1)$, we have that $c^{1/2} < c^{1/3}$.

FIGURE: Uniform distribution function with $\theta \in [0, 1]$ Haddad (GSME) Microeconomics II 33 / 50

EXAMPLE (WAR OF ATTRITION)

- A war of attrition is a situation where two players compete to see which is the first to quit the game.
- The player who stays longest wins the prize
- Wars of attrition occur in animal behavior (fighting over a territory), human behavior (see who stays the longest), interaction among firms (wait for another firm to exit an industry..)
- Formally, a war of attrition is like a second price auction where both the winner and the loser pay (this is called an *all-pay auction*)

EXAMPLE (WAR OF ATTRITION, CONT.)

- Suppose that players have a benefit from surviving the war of attrition, θ_i which is privately known.
- The value θ_i is distributed independently according to some distribution law, for example p(.)
- Each player i, j chooses a time s_i as a function of θ_i to exit.
- players decide about the value of s_i and s_j at the beginning of the game, but keep it as a private information
- Payoffs are:

$$u_i(s_i, s_j, \theta_i) = \begin{cases} -s_i & \text{if } s_i \leq s_j \\ \theta_i - s_j & \text{if } s_i > s_j \end{cases}$$
(11)

EXAMPLE (WAR OF ATTRITION, CONT.)

- What is the equilibrium strategy for player *i*? Basically, it comes form maximization of player's expected payoff respect to the strategy s_i, given her type.
- Expected payoffs for player *i* is:

$$E[u_i(s_i, \theta_j | \theta_i)] = -s_i \cdot Pr[s_i \le s_j(\theta_j)]$$
(12)
+
$$\int_{\theta_j | s_i > s_j(\theta_j)} (\theta_i - s_j(\theta_j)) f(\theta_j | \theta_i) d\theta_j$$

We are looking for the s^{*}_i(θ_i) of this game which maximizes the conditional expected utility of player *i*.

EXAMPLE (WAR OF ATTRITION, CONT.)

 The (pure-strategy) Bayesian equilibrium (s_i(.), s_j(.)) of this game. For each θ_i, our derived strategy must satisfy s_i(θ_i) the following optimization problem:

$$egin{aligned} & s_i^*(heta_i) \in \operatorname*{argmax}_{s_i} \{-s_i.\Pr[s_i \leq s_j(heta_j)] \ &+ \int_{ heta_j \mid s_i > s_j(heta_j)} (heta_i - s_j(heta_j)) f(heta_j \mid heta_i) d heta_j \} \end{aligned}$$

- Let's assume that $s_i(.)$ is an increasing and continuous function of θ_i
- Then, the inverse function of $s_i = s_i(\theta_i)$ is re-presentable by $\theta_i = \Phi_i(s_i)$, and $s_i \le s_j(\theta_j)$ is transformed to $\Phi_j(s_i) \le \theta_j$.

EXAMPLE (WAR OF ATTRITION, CONT.)

$$s_{i}^{*}(\theta_{i}) \in \underset{s_{i}}{\operatorname{argmax}} \{-s_{i} \cdot [1 - P_{j}(\Phi_{j}(s_{i}))] + \int_{0}^{s_{i}} (\theta_{i} - s_{j}) f_{j}(\Phi_{j}(s_{j})) \Phi_{j}'(s_{j}) ds_{j}\}$$
(13)

Technical remarks

- If f(x) and x = g(z), then $f(z) = f(g^{-1}(x)) |dz/dx|$. So this clarifies why the $\Phi'_i(s_i)$ appears in (13).
- θ_i in independent of θ_j , therefore $f(\theta_j|\theta_i) = f(\theta_j)$

•
$$\frac{d}{dx}\int_0^x f(t)dt = f(x)$$

- Derivative of first element of the objective function is: $\frac{d\{-s_i.[1-P_j(\Phi_j(s_i))]\}}{ds_i} = -[1-P_j(\Phi_j(s_i))] + s_i f_j(\Phi_j(s_i))\Phi'_j(s_i)$
- Derivative of second element of the objective function is: $(\Phi_i(s_i) - s_i)f(\Phi_j(s_i))\Phi'_i(s_i)$, where $\theta_i = \Phi_i(s_i)$

EXAMPLE (WAR OF ATTRITION, CONT.)

 F.O.C for the above maximization programming respect to the (upper limit of integral) decision variable s_i is:

$$[1 - P_j(\Phi_j(s_i))] - \Phi_i(s_i)f_j(\Phi_i(s_i))\Phi_i'(s_i) = 0$$
(14)

 First term shows the marginal cost of an incremental change in s_i and the second one is its marginal benefit. BAYESIAN NASH EQUILIBRIUM, WAR OF ATTRITION EXAMPLE (WAR OF ATTRITION, CONT.)

- Suppose that $P_1 = P_2 = P$ and we are looking for a symmetric equilibrium.
- Substituting θ = Φ(s) in equation (14), and using the fact that Φ' = 1/s', we have

$$s'(heta) = rac{ heta f(heta)}{1 - P(heta)}$$

or

$$s(\theta) = \int_0^{\theta} \left(\frac{xf(x)}{1 - P(x)} \right) dx$$

- Type with 0 value for the good are unwilling to fight for it, thus the lower limit of the integral equals zero.
- The optimal Bayesian Nash strategy is a function of θ, as the PBNE definition implies.

```
Haddad (GSME) Microeconomics II 40 / 50
```

EXAMPLE (WAR OF ATTRITION, CONT.)

- As an example, one can take the $P(\theta) = 1 exp(-\theta)$, then the optimal strategy would be $s(\theta) = \frac{\theta^2}{2}$, which is a function of player's type θ .
- Examine the ranges of type for θ < 2 and θ > 2. It is clear that for the latter s(θ) > θ.
 See Fudenberg and Tirol, page 219.

EXAMPLE (PUBLIC GOODS PROVISION)

• Consider the following game of public good provision with private costs $c_i \ge 0$, with following payoff matrix:

Plaver 2

		Contribute	Don't Contribute
Player 2	Contribute	1- <i>c</i> ₁ , 1- <i>c</i> ₂	1- <i>c</i> ₁ , 1
	Don't Contribute	1, 1- <i>c</i> ₂	0, 0

■ The cost c_i is *i.i.d.* distributed with a uniform density on $\Theta_i = [0, 2]$, or $F(c_i) = \int_0^{c_i} \frac{1}{2-0} d\theta_i$.

EXAMPLE (PUBLIC GOODS PROVISION CONT.)

- Let type c_i of player *i* contributing be denoted by $s_i(c_i) = 1$, and not contributing by $s_i(c_i) = 0$.
- Then net utility is:

 $u_i(s_1(c_1), s_2(c_2), c_1, c_2) = max\{s_1(c_1), s_2(c_2)\} - c_i.s_i(c_i)$

- Mixed strategy σ_i for player *i* in this game is given by $\sigma_i : \Theta_i \to \Delta(S_i)$
- Where $\Theta_i = [0, 2]$ and $S_i = \{0, 1\}$

EXAMPLE (PUBLIC GOODS PROVISION CONT.)

- Compute a Bayesian Nash equilibrium of this game in pure strategies.
 - A strategy profile s_i^{*} is a (pure strategy) BNE if s_i^{*}(c_i) maximizes

$$s_i^*(c_i) = \operatorname{argmax}_{s_i \in S_i} E_{c_{-i}} \max\{s_i, \sigma^*(c_{-i})\} - c_i \cdot s_i$$

for all c_i and all i.

- payoff from choosing $s_i^*(c_i) = 1$ is $1 c_i$ and the payoff from choosing $s_i^*(c_i) = 0$ is $p(s_{-i}^*(c_{-i})) \times 1 + (1 p(s_{-i}^*(c_{-i})) \times 0 = p(s_{-i}^*(c_{-i})).$
- Thus, the payoff from $s_i = 1$ is decreasing in $c_i = 1$ and the payoff of s_i is independent of c_i .

EXAMPLE (PUBLIC GOODS PROVISION CONT.) Hence, look at monotonic cutoff strategies of the form

$$s_i(c_i) = \begin{cases} 1 & \text{if } c_i \leq c^* \\ 0 & \text{if } c_i > c^* \end{cases}$$
 (15)

 Type c*of player i must be indifferent between contributing and not, so

$$1 - c^* = \rho(s^*_{-i}(c_{-i}) = 1) = \rho(c_{-i} \le c^*) = \frac{c^*}{2}$$

or $c^* = \frac{2}{3}$. Where, remember from the *i.i.d* and uniform distribution of types that,

$$\int_0^{c^*} \frac{1}{2} d\theta_i = \frac{c^*}{2}$$

HADDAD (GSME)

MIXED STRATEGIES IN BAYESIAN NASH EQUILIBRIUM

■ Therefore, all players with private cost below $\frac{2}{3}$ contribute, while players with $c_i > \frac{2}{3}$ do not.

DEFINITION (BAYESIAN EQUILIBRIUM WITH MIXED STRATEGIE)

A Bayesian equilibrium with Mixed Strategies of a Bayesian game $[I, \{\Delta(S_i)\}, \{u_i(.)\}, \Theta, F(.)]$ is a mixed strategy profiles $\sigma = (\sigma_i, \sigma_{-i})$, such that for every player *i* and every type $\theta \in \Theta_i$, we have

 $\sigma_i(.|\theta) \in \operatorname{argmax}_{\sigma_i \in \Delta(S_i)} F(\theta_{-i}|\theta_i) \Sigma_{s \in S}[\Pi_{j \neq i} \sigma_j(s_j|\theta_j)] \sigma_i(s_i) u_i(s|\theta)$

MIXED STRATEGIES IN BAYESIAN NASH EQUILIBRIUM

EXAMPLE (BATTLE OF SEXES WITH MIXED STRATEGIES)

Battle of Sexes with incomplete information

- in the game type *l* has two pyre Nash equilibria, while the type *h* has no pure equilibrium
- We need to mix among the strategies

•
$$I = \{1, 2\}, S_1 = S_1 = \{A, S\}$$

- $\bullet \Theta_1 = \{x\}, \Theta = \{l, h\}$
- $F_1(l|x) = F_1(h|x) = 1/2, F_2(x|l) = F_2(x|h) = 1$
- Player 1 mixes with probability $\sigma_1(B|x)$ and $1 \sigma_1(B|x)$ between *B* and *S*, respectively.

EXAMPLE (BATTLE OF SEXES WITH MIXED STRATEGIES, CONT.)

- If player 2's type is *h*, he mixes with probability $\sigma_2(B|l)$ and $1 - \sigma_2(B|l)$ between *B* and *S*
- If player 2's type is *h*, he mixes with probability $\sigma_2(B|h)$ and $1 - \sigma_2(B|h)$ between *B* and *S*
- Expected utility of player 1 is:

MIXED STRATEGIES IN BAYESIAN NASH EQUILIBRIUM

EXAMPLE (BATTLE OF SEXES WITH MIXED STRATEGIES, CONT.)

- Expected utility of player 1 for the above setting is:
 - $$\begin{split} U_{1}(\sigma, x) &= F_{1}(l | x)\sigma_{2}(B | l)\sigma_{1}(B | x)u_{1}(B(x), B(l), l, h, x) \\ &+ F_{1}(l | x)\sigma_{2}(S | l)\sigma_{1}(B | x)u_{1}(B(x), S(l), l, h, x) \\ &+ F_{1}(h | x)\sigma_{2}(B | h)\sigma_{1}(B | x)u_{1}(B(x), B(h), l, h, x) \\ &+ F_{1}(h | x)\sigma_{2}(S | h)\sigma_{1}(B | x)u_{1}(B(x), S(h), l, h, x) \end{split}$$
 - $+F_{1}(l|x)\sigma_{2}(B|l)\sigma_{1}(S|x)u_{1}(S(x), B(l), l, h, x)$ +F_{1}(l|x)\sigma_{2}(S|l)\sigma_{1}(S|x)u_{1}(S(x), S(l), l, h, x) +F_{1}(h|x)\sigma_{2}(B|h)\sigma_{1}(S|x)u_{1}(S(x), B(h), l, h, x) +F_{1}(h|x)\sigma_{2}(S|h)\sigma_{1}(S|x)u_{1}(S(x), S(h), l, h, x)

MIXED STRATEGIES IN BAYESIAN NASH EQUILIBRIUM

EXAMPLE (BATTLE OF SEXES WITH MIXED STRATEGIES, CONT.)

■ **Player 1's expected payoff:** Given player 2's strategy $\sigma_2(B|l)$ and $\sigma_2(B|h)$, her expected payoff to:

• action *B* (of P1) is

$$\frac{1}{2}\sigma_2(B(l))(2) + \frac{1}{2}\sigma_2(B(h))(2) = \sigma_2(B(l)) + \sigma_2(B(h))$$

• action S (of P1) is

$$\frac{1}{2}(1 - \sigma_2)(B(l)(2) + \frac{1}{2}(1 - \sigma_2(B(h))(2)))$$

$$= 1 - \frac{\sigma_2(B(l)) + \sigma_2(B(h))}{2}$$

- Therefore, her best response is to play *B* if $\sigma_2(B(l)) + \sigma_2(B(h)) > \frac{2}{3}$ and to play *S* if $\sigma_2(B(l)) + \sigma_2(B(h)) < \frac{2}{3}$.
- Find P2's expected payoff and the best response function. His best response is to play *B* if $\sigma_1(B) < \frac{1}{3}$.

HADDAD (GSME)

Microeconomics II

50 / 50