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Lotteries for continuous outcomes

Example 1. Suppose that probability distribution (lottery
1) F1(x) is of the form of

F1(x) =

∫
(1/2)dx

for x ∈ [1, 3], and the lottery two F2(x) has the following
form

F2(x) =

∫
(1/3)dx

for x ∈ [1, 4]. Then, lottery F1(x) is at least as good as
lottery F2(x) if only if∫

u(x)dF1(x) ≥
∫

u(x)dF2(x)

.
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Attitude toward risk: Risk aversion

The expected value of x , in our example wealth, is a
degenerated lottery

∫
xdF (x) with p = 1
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Attitude toward risk: Risk aversion

Locus of the p.u(x1) + (1− p).u(x2) depends on the value of
p.

Expected value of utility shows the value of gamble for the
agent.

For a risk averse agent, the expected value is less that
utility of the degenerated ( a certain value of wealth)
lottery.

Definition
Risk Aversion ∫

u(x)dF (x) ≤ u(

∫
xdF (x))
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Risk aversion and actuarially un-fair pricing

Suppose that insurance policy pricing is not actuarially fair,
show that a risk averse agent does not insure whole risk.

Max πu(w − D − αq + α) + (1− π)u(w − αq)

F .O.C : π(1−q)u′(w−D−αq+α)− (1−π)qu′(w−αq) ≤ 0

recall the Kuhn Tucker necessary condition in
mathematical programming.
⇒ π(1− q)u′(w − D − αq + α) = (1− π)qu′(w − αq)

q ≥ π ⇒ (1− π) ≥ 1− q ⇒ q(1− π) ≥ π(1− q)

⇒ u′(w − D − αq + α) ≥ u′(w − αq)

Note that the agent is risk averse, namely u”(.) ≤ 0, so we
will have: ⇒ w − D − αq + α ≤ w − αq ⇒ α ≤ D
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Risk aversion and attitude towards risk

Certainty equivalent of a lottery is a value of c(F , u) = x
which its utility is equal to the expected value of the
lottery. In other word, certainty equivalent of a lottery is
the value that an agent is willing to get it and leave the
game or gamble, u(c(F , u)) =

∫
u(x)dF (x)

Value of a game is evaluated by expected value of the
game:

∫
u(x)dF (x)

An agent is called risk averse if,

c(F , u) ≤
∫

xdF (x)

.
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Certainty equivalent: Example

Let probability density function for a risky asset be
f (x) = (1/2), where, x ∈ [1, 3]. The agent’s bernoulli utility
function defined on x is assumed as, u(x) = x1/2. Show
that the consumer is risk averse.

sketch solution: (a) find the expected utility function, (b)
find the value of x which equates utility level with the
expected value, (c) find the expected value of x . Now
compare the (b) and (c).

1 E (u(x)) =
∫ 3

1
(x1/2/2)dx = 1.4

2 u[c(F , u)] = x1/2 = 1.4 which gives c(F , u) = (1.4)2 = 1.96

3 E (x) =
∫ 3

1
(x/2)dx=2

4 1.6 = c(F , u) ≤ E (x) = 2

5 Therefore, the agent is risk averse, or, the bernoulli utility
function is Concave.
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Probability premium value and risk aversion: Example

Definition
Probability premium

u(x) = u(x − ε)(0.5− π(.)) + u(x + ε)(0.5 + π(.))

Take x = 4, ε = 1 and u(x) =
√
x .

for the given values of x , ε and bernoulli utility function,
show that Probability premium is positive. Why is this so?

Solution:

u(4) = u(4− 1)(0.5− π(.)) + u(4 + 1)(0.5 + π(.))
√

4 =
√

4− 1(0.5− π(.)) +
√

4 + 1(0.5 + π(.))

π(.) = 0.0357

Change the utility from to u(x) = x2 and compare the
result, is that positive yet?
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Attitude towards risk: From risk aversion to risk lover

1. preference of a risk averse decision maker, 2. risk
neutral, and preference of a risk lover decision maker
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How to measure the risk aversion

The utility functions differ in terms of their curvature

Can we use this property as a measure of risk aversion?
YES

Arrow and Pratt have introduced the Absolute Risk
Aversion Coefficient

Definition
Coefficient of Absolute Risk Aversion: The Arrow-Pratt
coefficient of absolute risk aversion at x is defined as:

rA(x) = −u”(x)

u′(x)

Note: we are dividing the u”(x) by u′(x) to make it invariant to
any linear increasing transformation, compare rA(x) for
u(x) =

√
x and u(x) = α

√
x .
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Interpersonal risk aversion comparison

Given two individuals with bernoulli utility function, u1(x)
and u2(x), how can one compare their risk aversion
intensity?

There are many ways:

1 concavity of their utility function

2 certainty equivalent value comparison

3 probability premium values

4 Arrow-Pratt coefficient of absolute risk aversion
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Curvature of bernoulli utility functions and the values
of c(F , u)

Figure: The utility function with greater curvature gives smaller value
for c(F , u)
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Comparisons across individuals

the following statements are equivalent
• rA(x , u2) ≥ rA(x , u1) for every x

• There is an increasing concave function ψ such that
u2(x) = ψ(u1(x)) at all x , that is u2(x) is more concave than
u1(x), therefore, former is more risk averse than the later .

• c(F , u1) ≥ c(F , u2)

• π(x , ε, u2) ≥ π(x , ε, u1)

Example: u1(x) =
√
x and u2(x) = (

√
x)3/4

Haddad (GSME) Microeconomics II 14 / 32



Comparisons across individuals

Theorem
If rA(x , u2) ≥ rA(x , u1) for every x, then there is an increasing
concave function ψ such that u2(x) = ψ(u1(x)) at all x and
u2(x) is more risk averse than u2(x).

Proof:
u′2(x) = ψ′(u1(x))u′1(x)

u”
2(x) = ψ”(u1(x))(u′1(x))2 + ψ′(u1(x))u”

1(x)

−u”
2(x)

u′2(x) = −ψ”(u1(x))(u′1(x))2+ψ′(u1(x))u”
1(x)

ψ′(u1(x))u′1(x)

rA(x , u2) = −ψ”(u1(x))(u′1(x))
ψ′(u1(x)) + rA(x , u1)

−ψ”(u1(x))(u′1(x))
ψ′(u1(x)) ≥ 0
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Comparisons across individuals:Example

Example

Suppose that the utility function of individual 2 is concave
transformation of individual 1, as u1(x) =

√
x and

u2(x) = (
√
x)3/4. Show that rA(x , u2) ≥ rA(x , u1)

Solution

rA(x , u1) = 1
2

1
x

rA(x , u2) = 5
8

1
x
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Payoff distributions comparison in terms of return and
risk

Figure: Two lotteries with the same means but different variances
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Payoff distributions comparison in terms of return and risk

Figure: Two lotteries with the same variances but different means
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Graphical representation of First order stochastic
dominance

Figure: G (.) and F (.) are probability distributions. For every given
level of probability [F (.) and G (.)], return of lottery F (.) dominates
G (.)
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First Order Stochastic Dominance

Definition
First order stochastic dominance The lottery (distribution) F (.)
first order stochastically dominates lottery G (.) if, for every
nondecreasing function u : R→ R, we have∫

u(x)dF (x) ≥
∫

u(x)dG (x)

.
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First Order Stochastic Dominance

Theorem
First order stochastic dominance: The lottery
(distribution) of monetary payoffs F (.) first-order stochastically
dominates lottery G (.) if only if F (.) ≤ G (.) for every x.
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First Order Stochastic Dominance: Proof

Proof.
The only if part [

∫
u(x)dF (x) ≥

∫
u(x)dG (x) only if

F (.) ≤ G (.) for every x . [A only if B ≡ if A then B]

or equivalently, if
∫
u(x)dF (x) ≥

∫
u(x)dG (x) , then

F (.) ≤ G (.) for every x .]

We apply the contour positive reasoning method [if ¬B
then (¬A)] to prove the statement.

Specifically, if ¬B {F (.) > G(.)} , then ¬A
{
∫
u(x)dF (x) <

∫
u(x)dG(x)]}.

By [¬B], we have H(x) = F (x)− G (x) > 0, and we want to
show that

∫
u(x)dF (x)−

∫
u(x)dG (x)] < 0.
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First order Stochastic dominance

Figure: the step utility function u(x) = 0 for x < (x̄) and u(x) = 1 for
x ≥ (x̄)

the step utility function has the property that∫
u(x)dH(x) =

∫ x̄
−∞ u(x)dH(x) +

∫ +∞
x̄ u(x)dH(x).
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First order Stochastic dominance

Proof.

the first part of the integral equals zero and for the second
part we have H(∞)− H(x̄) = −H(x̄) < 0, since H(∞) = 0

It gives
∫
u(x)dF (x)−

∫
u(x)dG (x)] = −[F (x̄)− G (x̄)] =

[G (x̄)− F (x̄)] < 0 is satisfied for every x̄ .

Since G (x̄) < F (x̄), we conclude that ¬A is true .
Q.E.D
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First order Stochastic dominance, the IF part

Proof.
The if part [

∫
u(x)dF (x) ≥

∫
u(x)dG (x) if F (.) ≤ G (.) for every

x . [A if B ≡ if B then A]. We use a direct method to prove the
statement.

if F (.) ≤ G (.) then [
∫
u(x)dF (x) ≥

∫
u(x)dG (x)

Let construct H(x) = F (x)− G (x) ≤ 0 and suppose
u(x) = u and dH(x) = dv .

Then by integrating by part we have:∫
u(x)dH(x) = [u(x)H(x)]∞0 −

∫
u′(x)H(x)dx
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First order Stochastic dominance, the IF part

The first part of the integral equals zero [H(0) = H(∞) = 0]
and for the second part we have −

∫
u′(x)H(x)dx

From risk aversion assumption we have u′(x) ≥ 0, and we
know from the definition of H(x) that, it must be
non-positive, therefore:∫

u(x)dH(x) =

∫
u(x)dF (x)−

∫
u(x)dG (x)

= −
∫

u′(x)H(x)dx ≥ 0

Q.E.D
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Graphical representation of Second order stochastic
dominance

Figure: Density distribution
functions for lotteries F (.) and
G (.) Figure: Probability distribution

functions for lotteries F (.) and
G (.)
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Second Order Stochastic Dominance

Definition
Second order stochastic dominance For any two lotteries
(distributions) F (.) and G (.) with the same mean,F (.) second
order stochastically dominates lottery(or less risky than) G (.) if,
for every nondecreasing function u : R→ R, we have∫

u(x)dF (x) ≥
∫

u(x)dG (x)

.
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State dependent utility function

We begin by discussing a convenient framework for
modeling uncertain alternatives that, in contrast to the
lottery apparatus, recognizes underlying states of nature.

State of Nature representation of Uncertainty
• we show a state by s ∈ S and its corresponding probability

by πs > 0
• where

∑
s πs

Every uncertain alternative ( which usually is a monetary
return) is realized with a probability

Definition
Random variable: A random variable is a function g : S −→ R+

that maps states into monetary outcomes
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State dependent preferences and the Extened Expcted Utility Representation

Contingent commodity, if state s occurs, then you will
receive 1 $.

Example: If a bookmaker offers you odds of 10 to 1 against
a certain horse winning, he is saying he will give you 10 if
it wins and you will pay him 1 if it loses.

Definition
Extended expected utility representation: the preference
relation % has an extended expected utility representation if for
every s ∈ S , there is a function us : R1

+ −→ R such that for any
(x1, ..., xS) ∈ RS

+ and (x ′1, ..., x
′
S) ∈ RS

+,

(x1, ..., xS) % (x ′1, ..., x
′
S) if and only if∑

s πsus(xs) ≥
∑

s πsus(x ′s).�
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State dependent utility function

Figure: state dependent preferences

The marginal rate of substitution at a point (x̄ , x̄) is
π1u

′
1(x̄)/u′2(x̄).
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State dependent utility function: Demand for insurance

Figure: state dependent preferences

The marginal rate of substitution at a point (x̄ , x̄) for a
state-dependent utility with non-uniform utility in each
state is π1u

′
1(x̄)/π2u

′
2(x̄) < π1/π2.
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