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Lotteries for continuous outcomes

m Example 1. Suppose that probability distribution (lottery
1) Fi(x) is of the form of

Fi(x) = /(1/2)dx

for x € [1, 3], and the lottery two F(x) has the following
form

Fo(x) = /(1/3)dx

for x € [1,4]. Then, lottery Fi(x) is at least as good as
lottery Fp(x) if only if

/ u(x)dFy(x) > / u(x)dFa(x)

Haddad (GSME) Microeconomics II 3 /32



Attitude toward risk: Risk aversion

m The expected value of x, in our example wealth, is a
degenerated lottery [ xdF(x) with p =1
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Attitude toward risk: Risk aversion

m Locus of the p.u(x1) + (1 — p).u(x2) depends on the value of
p.

m Expected value of utility shows the value of gamble for the
agent.

m For a risk averse agent, the expected value is less that
utility of the degenerated ( a certain value of wealth)
lottery.

Definition
Risk Aversion

/ u(x)dF (x) < uf / xdF (x))
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Risk aversion and actuarially un-fair pricing

m Suppose that insurance policy pricing is not actuarially fair,
show that a risk averse agent does not insure whole risk.

Max mu(w — D — aqg+ a) + (1 — m)u(w — aq)
F.O.C:7(1—-q)u/(w—D—ag+a)—(1—7)qu'(w—aq) <0

m recall the Kuhn Tucker necessary condition in

mathematical programming.
=7n(l—q)u'(w—D—-ag+a)=(1-nm)gu'(w—aq)

gzr=(1-m)>21-qg=gq(l-m)>n(l-q)
= u(w—D—aq+a)>d(w-—aq)

m Note that the agent is risk averse, namely v"(.) < 0, so we
will have: = w—-D —ag+a<w—-—ag=a<D
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Risk aversion and attitude towards risk

m Certainty equivalent of a lottery is a value of ¢(F, u) = x
which its utility is equal to the expected value of the
lottery. In other word, certainty equivalent of a lottery is
the value that an agent is willing to get it and leave the
game or gamble, u(c(F,u)) = [ u(x)dF(x)

m Value of a game is evaluated by expected value of the

game: [ u(x)dF(x)

m An agent is called risk averse if,

o(F,u) < / xdF (x)
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Certainty equivalent: Example

m Let probability density function for a risky asset be
f(x) = (1/2), where, x € [1, 3]. The agent’s bernoulli utility
function defined on x is assumed as, u(x) = x*/2. Show
that the consumer is risk averse.

m sketch solution: (a) find the expected utility function, (b)
find the value of x which equates utility level with the
expected value, (c) find the expected value of x. Now
compare the (b) and (c).

0 E(u(x)) = [2(x'/2/2)dx = 1.4

® u[c(F,u)] = x}/? = 1.4 which gives c(F,u) = (1.4)?> = 1.96
® E(x fl (x/2)dx=2

O 16=c(F,u)<E(x)=

@® Therefore, the agent is risk averse, or, the bernoulli utility
function is Concave.
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Probability premium value and risk aversion: Example

Definition
Probability premium

u(x) = u(x —€)(0.5 —7(.)) + u(x + €)(0.5 + = (.))

Take x = 4, e = 1 and u(x) = /.
for the given values of x, € and bernoulli utility function,
show that Probability premium is positive. Why is this so?

m Solution:
u(4) =u(4—-1)(05—m(.))+ u(4+1)(0.5+7(.))
V& =/4=1(05—7(.)) + V4 + 1(0.5 + 7(.))
m(.) = 0.0357

Change the utility from to u(x) = x? and compare the
result, is that positive yet?
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Attitude towards risk: From risk aversion to risk lover
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m 1. preference of a risk averse decision maker, 2. risk
neutral, and preference of a risk lover decision maker
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How to measure the risk aversion

m The utility functions differ in terms of their curvature

m Can we use this property as a measure of risk aversion?
YES

m Arrow and Pratt have introduced the Absolute Risk
Aversion Coefficient

Definition
Coefficient of Absolute Risk Aversion: The Arrow-Pratt
coefficient of absolute risk aversion at x is defined as:

u" (x)

u'(x)

ra(x) = —

Note: we are dividing the u”(x) by ¢/(x) to make it invariant to
any linear increasing transformation, compare ra(x) for

u(x) = /x and u(x) = ay/x.
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Interpersonal risk aversion comparison

m Given two individuals with bernoulli utility function, ui(x)
and up(x), how can one compare their risk aversion
intensity?

m There are many ways:
@ concavity of their utility function
® certainty equivalent value comparison

® probability premium values

O Arrow-Pratt coefficient of absolute risk aversion
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Curvature of bernoulli utility functions and the values
of ¢(F, u)
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Figure: The utility function with greater curvature gives smaller value
for ¢(F, u)
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Comparisons across individuals

m the following statements are equivalent

o ra(x,un) > ra(x, up) for every x

e There is an increasing concave function 1 such that

ua(x) = ¥(u1(x)) at all x, that is up(x) is more concave than
u1(x), therefore, former is more risk averse than the later .

o c(F,u) > c(F,u)
o m(x,€,un) > m(x, € u1)

m Example: uy(x) = v/x and up(x) = (v/x)*/*
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Comparisons across individuals

Theorem
If ra(x, u2) > ra(x, u1) for every x, then there is an increasing

concave function ¢ such that up(x) = ¥(u1(x)) at all x and
up(x) is more risk averse than up(x).

Proof:

m uy(x) = w'( 1(x))ui(x)
m up(x) = 9" (%)) (1 (x))? + ' (un () uy (%)
)

w L) ¥ () (U ()P (n () uy ()
up(x) P (1 (x))uy (x)
mra(x, up) = _—('gb’((u)l)((xu)l)(X)) + ra(x, u1)
P (u(x))(uy(x))
T ) B
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Comparisons across individuals:Example

Example

Suppose that the utility function of individual 2 is concave
transformation of individual 1, as u;(x) = y/x and
up(x) = (/x)3*. Show that ra(x, u2) > ra(x, uy)

Solution
L fA(X, Ul) = %%
L fA(X, Uz) = %%

Haddad (GSME) Microeconomics II 16 / 32



Payoff distributions comparison in terms of return and
risk

Probability

two lotteries with the same mean but different variances

Figure: Two lotteries with the same means but different variances
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Payoff distributions comparison in terms of return and risk

smaller mean for returns larger mean for returns
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Figure: Two lotteries with the same variances but different means
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Graphical representation of First order stochastic

dominance
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Figure: G(.) and F(.) are probability distributions. For every given
level of probability [F(.) and G(.)], return of lottery F(.) dominates

G()
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First Order Stochastic Dominance

Definition

First order stochastic dominance The lottery (distribution) F(.)
first order stochastically dominates lottery G(.) if, for every
nondecreasing function v : R — R, we have

/ u(x)dF (x) > / u(x)dG(x)
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First Order Stochastic Dominance

Theorem
First order stochastic dominance: The lottery

(distribution) of monetary payoffs F(.) first-order stochastically
dominates lottery G(.) if only if F(.) < G(.) for every x.

Haddad (GSME) Microeconomics II 21 / 32



First Order Stochastic Dominance: Proof

Proof.
The only if part [[ u( ) > [ u( x) only if
F(.) < G(.) for every x. [A only if B = 1f A then B]

m or equivalently, if [ u(x)d. > [ u( , then

F(.) < G(.) for every x ]
m We apply the contour positive reasoning method [if =B
then (—A)] to prove the statement.
m Specifically, if =B {F(.) > G(.)} , then —A
{J uC)dF(x) < [ u(x)dG(x)]}-
m By [-B], we have H(x) = F(x) — G(x) > 0, and we want to
show that [ u(x)dF(x) — [ u(x)dG(x)] < 0.
Ol
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First order Stochastic dominance

ulx)

Figure: the step utility function u(x) = 0 for x < (x) and u(x) =1 for
x > (X)

m the step utility function has the property that

[u(x)dH(x) = [*__u(x)dH(x) + [ u(x)dH(x).

Haddad (GSME) Microeconomics II 23 / 32



First order Stochastic dominance

Proof.
m the first part of the integral equals zero and for the second
part we have H(oo) — H(X) = —H(X) < 0, since H(co) =0
m It gives [ u(x)dF(x) — [ u(x)dG(x)] = —[F(x) — G(x)] =
[G(X) — F(x)] < 0 is satisfied for every X.
m Since G(X) < F(X), we conclude that —A is true .
QE.D
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First order Stochastic dominance, the IF part

Proof.

The if part [[ u(x)dF(x) > [ u(x)dG(x) if F(.) < G(.) for every
x. [Aif B = if B then A]. We use a direct method to prove the
statement.

m if F(.) < G(.) then [[ u(x)dF(x) > [ u(x)dG(x)
m Let construct H(x) = F(x) — G(x) < 0 and suppose
u(x) = u and dH(x) = dv.

m Then by integrating by part we have:

/u(x)dH(x) = [u(x)H(x)]5° —/u'(x)H(x)dx
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First order Stochastic dominance, the IF part

m The first part of the integral equals zero [H(0) = H(o0) = 0]
and for the second part we have — [ u/(x)H(x)dx

m From risk aversion assumption we have v/(x) > 0, and we
know from the definition of H(x) that, it must be
non-positive, therefore:

/ﬁ@wm@:/ngﬂm—/ﬁqun

:_/ﬂ@m@wzo
Q.E.D
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Graphical representation of Second order stochastic

dominance

()

Probability

G(x)

two lotteries with the same mean but different variances

Figure: Density distribution
functions for lotteries F(.) and

G()
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functions for lotteries F(.) and

G()
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Second Order Stochastic Dominance

Definition

Second order stochastic dominance For any two lotteries
(distributions) F(.) and G(.) with the same mean,F(.) second
order stochastically dominates lottery(or less risky than) G(.) if,
for every nondecreasing function v : R — R, we have

/ u(x)dF (x) > / u(x)dG(x)
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State dependent utility function

m We begin by discussing a convenient framework for
modeling uncertain alternatives that, in contrast to the
lottery apparatus, recognizes underlying states of nature.

m State of Nature representation of Uncertainty

e we show a state by s € § and its corresponding probability
by s >0
e where ) 7

m Every uncertain alternative ( which usually is a monetary

return) is realized with a probability

Definition
Random variable: A random variable is a function g : $ — R4
that maps states into monetary outcomes
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State dependent preferences and the Extened Expcted Utility Representation

m Contingent commodity, if state s occurs, then you will
receive 1 $.

m Example: If a bookmaker offers you odds of 10 to 1 against
a certain horse winning, he is saying he will give you 10 if
it wins and you will pay him 1 if it loses.

Definition

Extended expected utility representation: the preference
relation 7~ has an extended expected utility representation if for
every s € S, there is a function us : R}F — R such that for any
(X1, ..., xs) € RY and (x{, ..., x5) € RY,

(x1,.,X5) Z (X1, ..., xg) if and only if
D s Tstis(Xs) > Do  msus(xg). M
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State dependent utility function
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Figure: state dependent preferences

m The marginal rate of substitution at a point (X, X) is
muy(%)/ ().
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State dependent utility function: Demand for insurance
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Figure: state dependent preferences

m The marginal rate of substitution at a point (X, X) for a
state-dependent utility with non-uniform utility in each
state is mu](X)/maub(X) < m1/m2.
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