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What topics will this chapter cover? Well, lets find them
out.

• Pareto optimal allocation, an allocation with the property
in which it is impossible to make any consumer better-off
without making some other consumer worse-off.

• Walrasian Equilibrium, an economy with private
ownership.In that economy consumers’ budget set is
determined by her owned endowments and her profit share
from firms.

• A generalization of Walarasian Equilibrium, a price
equilibrium with transfers, in this economy redistribution of
wealth (endowments) among the consumers are possible.

• The remaining parts of the chapter are devoted to exploring
the relationship between Pareto optimality and the
equilibrium concepts.
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Notations and definitions

• Assume an economy with I price taker consumers, J price
taker firms and L commodities. Every consumer is a
potential user of the L goods and there are L commodities
in the production plan of each firm.

• Each consumer i = 1, . . . , I has preference relation %i
which is defined on the consumption set Xi ⊂ RL+.

The preference relation is assumed to be Rational, i. e.
complete and transitive

• The economy’s endowments are given to the consumer by a
vector ω̄ = (ω̄1, . . . , ω̄L), in which ω̄l, l = 1, . . . , L is a vector
with I elements. A typical element of ω̄l is ωli.
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Notations and definitions
• The preference relations are denoted by {(%i, Xi)}Ii=1.
• The Production technologies in the economy are given by
{Yj}Jj=1.

• And finally the resources are shown by ω̄
Therefore the whole economy is summarized by
({(%i, Xi)}Ii=1, {Yj}Jj=1, ω̄)

Example

The edgeworth box pure exchange economy is a case in which
L = 2, I = 2, X1 = X2 = R2

+, J = 1 and Y1 = −R2
+.

Definition

An economy is a pure exchange economy if its only technological
possibility is that of free disposal, that is
Yj = −RL+, j = 1, . . . , J . The free disposal technology -no
production can take place, only destruction.
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Notations and definitions

Definition

Allocation: An allocation (x, y) = (x1, . . . , xI , y1, . . . , yJ) is a
specification of consumption vector xi ∈ Xi ⊂ RL+ for each
consumer and production plan yj ∈ Yj ⊂ RL for each firm.

Definition

A Feasible Allocation: An allocation
(x, y) = (x1, . . . , xI , y1, . . . , yJ) is a feasible allocation
Σixli = ω̄l + Σjylj for every l. That is if Σixi = ω̄ + Σjyj .
the set of feasible allocation is denoted by:
A = {(x, y) ∈ X1 × · · · ×XI × Y1 · · · × YJ : Σixi = ω̄ + Σjyj} ⊂
RL(I+J).
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Vilferedo Pareto
A socially desirable outcome is that of Pareto optimal
allocation. The concept is named after Vilfredo Pareto (1848
—1923), Italian engineer and economist, who used the concept
in his studies of economic efficiency and income distribution.

Figure 1: Vilferedo Pareto
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Notations and definitions

Definition

A feasible allocation (x, y) is Pareto optimal ( or Pareto
efficient) if there is no other allocation (x′, y′) ∈ A that Pareto
dominates it, that is if there is no feasible allocation (x′, y′) such
that x′ %i xi for i and x′i �i xi for some i.

• In word, an allocation is not Pareto optimal if there is
an alternative allocation where improvements can be made
to at least one participant’s well-being without reducing
any other participant’s well-being.
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• If there is a transfer that satisfies this condition, the
reallocation is called a Pareto improvement.

Definition
A feasible allocation x

is called weakly Pareto efficient if there is no feasible
allocation x′ with ui(x′i) > ui(xi), (1 ≤ i ≤ I).
is called strongly Pareto efficient if there is no feasible
allocation x′ with ui(x′i) ≥ ui(xi), (1 ≤ i ≤ I) with at least
one of these inequalities strict.

• A "weak Pareto optimum" (WPO) is an allocation for
which there are no possible alternative allocations whose
realization would cause every individual to gain.
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• Thus, an alternative allocation is considered to be a Pareto
improvement if and only if the alternative allocation is
strictly preferred by all individuals.

• When contrasted with weak Pareto efficiency, a standard
Pareto optimum as described above is referred to as a
"strong Pareto optimum" (SPO).

• Weak Pareto-optimality is "weaker" than strong
Pareto-optimality in the sense that any SPO also qualifies
as a WPO, but a WPO allocation is not necessarily an
SPO. why?
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Proof.

Suppose that a feasible allocation (x, y) is strongly Pareto
efficient, and take any allocation (x′, y′) for which ui(x′) > ui(x)
for ∀i. Then, by SPO of (x, y), allocation (x′, y′) cannot be
feasible.
Thus, (x, y) must also be weakly Pareto efficient. These are
equivalent if %i is strongly monotone. It suggests that (x, y)
must be interior.

Definition

Constrained Pareto optimal. The condition of constrained
Pareto optimality is a weaker version of the standard condition
of Pareto optimality employed in economics, which accounts for
the fact that a potential planner (e.g., the government) may not
be able to improve upon a decentralized market outcome, even
if that outcome is inefficient. This will occur if it is limited by
the same informational or institutional constraints as are
individual agents. Page 444 M.G.W
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• An allocation is Pareto optimal if there is no waste:
That is, it is impossible to make any consumer strictly
better off without making some other consumer worse off.

• Pareto optimality concept does not concern itself with
distributional issues.

In a pure exchange economy, an allocation that gives all of
society’s endowments to one consumer who has strongly
monotone preferences is Pareto optimal.
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Notations and definitions
• Properties of competitive private ownership economies:

Every good is traded in a market at publicly know prices
that consumers and firms take as unaffected by their own
actions.

Consumers trade to maximize their well-bing,

Firms produce and trade to maximize their profits,

The wealth of consumers is derived from their
endowments and from ownership claims (shares) to the
profits of the firms.

i.e. Consumers are the owner of firms
• Consumer i owns commodities ωi ∈ RL as her initial
endowment vector.

• She claims to a share θij ∈ [0, 1] of the profit of firm j.
• Thus the Private Ownership Economy is summarized by

({(%i, Xi)}Ii=1, {Yj}Jj=1, {ωi, θi1, . . . , θiJ}Ii=1).
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Walrasian equilibrium

The price taking equilibrium for a private ownership economy is
called Walrasian equilibrium.

Definition

Walrasian equilibrium: Given a private ownership economy
specified by ({(%i, Xi)}Ii=1, {Yj}Jj=1, {ωi, θi1, . . . , θiJ}Ii=1), an
allocation(x∗, y∗) and a price vector p = (p1, . . . , pL) constitute
a Walrasian (or competitive) equilibrium if:

1. For every j, y∗j maximizes profits in Yj ; that is,
p.yj ≤ p.y∗j for all yj ∈ Yj

2. For every i, x∗i is maximal for %i in the budget set
{xi ∈ Xi : p.xi ≤ p.ωi + Σjθijp.y

∗
j }.

3. Σix
∗
i = ω̄ + Σjy

∗
j .
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Walrasian equilibrium, Interpretations

• Condition (1) of The definition (Walrasian equilibrium) says
that at a Walrasian equilibrium, firms are maximizing their
profits given the equilibrium price p, see chapter 5 MWG.

• Condition (2) implies that consumers are maximizing their
well-being given, first, equilibrium prices and second, the
wealth derived from endowments and their shares of profits,
see chapter 3 MWG.

• Condition (3) says that markets must clear at an
equilibrium price, i.e. firms and consumers are
subjected to the price vector.
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Price Equilibrium with Transfers
• The aim of this chapter is to relate of Pareto Optimality to
supportability by means of price-taking behavior.

• We can imagine a situation where a social planner is able to
carry out (lum-sum) redistributions of wealth in a desired
manner.

Figure 2: Lum-sum transfers a. Wealth Transfer
∑

i Ti = 0, b.
Transfer of endowments
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Price Equilibrium with Transfers

Definition

Walrasian equilibrium: Given a private ownership economy
specified by ({(%i, Xi)}Ii=1, {Yj}Jj=1, {ωi, θi1, . . . , θiJ}Ii=1), an
allocation(x∗, y∗) and a price vector p = (p1, . . . , pL)� 0
constitute a Price Equilibrium with Transfers if there is an
assignment of wealth levels (w1, . . . , wI) with
Σiwi = p.ω̄ + Σjp.y

∗
j . such that:
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Price Equilibrium with Transfers

1. For every j, y∗j maximizes profits in Yj ; that is,
p.yj ≤ p.y∗j for all yj ∈ Yj

2. For every i, x∗i is maximal for %i in the budget set
{xi ∈ Xi : p.xi ≤ wi.

Where wi = p.ωi + Σjθijp.y
∗
j .

]
3. Σix

∗
i = ω̄ + Σjy

∗
j for all i = 1, . . . , I.

A Walrasian equilibrium is a special case of a price
equilibrium with transfers.
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Price Equilibrium with Transfers, Interpretations

• In a price equilibrium with transfers there must be wealth
distribution such that allocation (x∗, y∗) and p ∈ RL

++

constitute an equilibrium, i.e. is a Walrasian
equilibrium.

• There is no supposition for consumers’ wealth level.

• The Walrasian equilibrium is a special case of Price
Equilibrium with Transfers, but without any transfers.

• Any desired Pareto optimal allocation can be achieved by
appropriately redistributing wealth in a lump-sum fashion
and then letting the market work (i.e. any Pareto optimal
allocation is supportable as an equilibrium with transfers).
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Example

Argue graphically that in an Edgeworth box economy with
locally non-satiated preferences a Walrasian equilibrium is
Pareto optimal.

Figure 3: .B.3
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Example

Consider an Edgeworth box economy in which the consumers
have the CD utility functions u1(x11, x21) = xα11x

1−α
21 and

u2(x12, x22) = xβ12x
1−β
22 . Consumer i′s endowments are

(ω1i, ω2i) >> 0, for i = 1, 2. Find the offer curves for the
consumers, and equilibrium prices ratio.
Solution: The offer curve of consumer 1 can be derived as
follows:

max
x11,x21

xα11x
1−α
21

s.t.
p1x11 + p2x21 = p1ω11 + p2ω21

. From the F.O.C. it follows that x11 = α(p1ω11+p2ω21)
p1

,

x21 = (1−α)(p1ω11+p2ω21)
p2

, x12 = β(p1ω12+p2ω22)
p1

and

x22 = (1−β)(p1ω12+p2ω22)
p2

. Go ahead and complete the solution!
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Example

In a certain economy there are two commodities, education (e)
and food (f), produced by using labour (L) and land (T )
according to the production functions:

e = (min{L, T})2 and f = (LT )1/2

There is a single consumer with the utility function

u(e, f) = eαf1−α;

and endowment (ωL, ωT ). To ease of the calculations, take
ωL = ωT = 1 and α = 1/2.

Find the optimal allocation of the endowments to their
productive uses. Solution will be provided in the class.
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The First Fundamental Theorem of Welfare Economics

• The theorem states conditions under which any price
equilibrium with transfer ( a Walrasian Equilibrium) is
Pareto optimum.

• This specifies conditions under which a rational competitive
equilibrium will be efficient.

• The theorem is the mathematical explanation for Adam
Smith’s invisible hand.

• A single, and very weak assumption, locally non-satiated
preferences, is all that is required for the result.

23 / 74



Definition

Locally non-satiated preference relation: The preference
relation %i on the consumption set Xi is locally non-satiated
if for every xi ∈ Xi and every ε > 0, there is an x′i ∈ Xi such
that ‖ x′i − xi ‖≤ ε and x′i �i xi
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Locally non-satiated preference relation

Figure 4: The property of local nonsatiation of consumer’s
preferences states that for any bundle of goods
there is always another bundle of goods arbitrarily close
to that and the bundle is preferred to it. What this means
is that a consumer always either prefers more of an item or
less of an item of goods.
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Price Equilibrium with Transfers, Interpretations

• Local non-satiation is implied by monotonicity of
preferences (a stronger condition ). Because the converse
isn’t true, local non-satiation is a weaker condition.

• There is no requirement that the preferred bundle x′i
contain more of any good - hence, some goods can be
"bads" and preferences can be non-monotone.

• if we have x′i � xi (a stronger condition ) this implies
x′i ≥ x and x′i 6= x (a weaker condition ), coupled with
strong monotonicity this implies x′i � x which is all we need
to prove that strong monotonicity implies monotonicity
(weaker).
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The First Fundamental Theorem of Welfare Economics
Definition

If preferences are locally non-satiated (LNS), and if (x∗, y∗, p) is
a price equilibrium with transfers, then the allocation (x∗, y∗) is
Pareto optimal. In particular, any Walrasian equilibrium
allocation is Pareto optimal.

Proof.

• Suppose that (x∗, y∗, p) is a price equilibrium with transfers
and that the wealth levels are (w1, . . . , wI).

• Where Σiwi = p.ω̄ + Σjp.y
∗
j .

• The preference maximization part of Price Equilibrium
with Transfers implies that:

If xi �i x∗i then p.xi > wi (3)
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The First Fundamental Theorem of Welfare Economics
Proof.

• LNS together with the preference maximization implies
that:

If xi %i x∗i then p.xi ≥ wi (4)

This point can be proved by contradiction, i.e. xi %i x
∗
i but

p.xi < wi.
• A predicate is:
• Strong if there are few objects for which it is true; and
• Weak if there are many objects for which it is true.
• We say statement A is Stronger than B if A implies B.

1. Now, by contradiction consider an allocation that (x, y)
that Pareto dominates (x∗, y∗).

2. Then by be definition ( Pareto dominance), xi %i x∗i for all
i and xi �i x∗i for some i.
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The First Fundamental Theorem of Welfare Economics

Proof.

Cont.

3. By (4), we must have p.xi ≥ wi for all i, and by (3)
p.xi > wi for some i.

4. Hence
Σip.xi >

∑
iwi = p.ω̄ + Σjp.y

∗
j .

5. Since y∗j is profit maximizing for firm j at prices p, we have
p.ω̄ + Σjp.y

∗
j ≥ p.ω̄ +

∑
j p.yj . Thus∑

i p.xi > p.ω̄ +
∑

j p.yj .
6. But (x, y) cannot be a feasible allocation.
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The First Fundamental Theorem of Welfare Economics:
Interpretations

• The importance of LNS assumption
• The Edgeworh box where locally nonsatiation fails for
consumer 1 (the indifference is thick).

Figure 5: A price Equilibrium with transfers that is not a Pareto
optimum, Failure of the 1st welfare theorem.
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The First Fundamental Theorem of Welfare Economics:
Interpretations

• In the above Edgworth box x∗, a price equilibrium for the
price vector p = (p1, p2) is not Pareto optimal, (why?)

• Consumer (1) is indifferent about a move to allocation x,
and consumer (2), having strongly monotone preferences, is
strictly better off, therefore the x∗ cannot be Pareto
optimal.

• Although assumption on the primitive of the economy are
very weak i.e. only local non-satiation is required, we must
keep in mind all the exogenous assumptions underlying the
model:
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The First Fundamental Theorem of Welfare Economics:
Interpretations

1. Markets are complete

2. No externalities

3. No uncertainty

4. Price-taking behavior (very strong assumption when
economy is small).

• In the next paragraph we will study the second
fundamental theorem of welfare economics.

• The theorem gives conditions under which any desired
distributional aims can be achieved through the use of
competitive price taking markets.
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The Second Fundamental Theorem of Welfare Economics

• The second Welfare Theorem is the more useful theorem,
specifying conditions that are more strict under which a
Pareto efficient allocation can be replicated by a
competitive equilibrium.

• This is more useful because it is easier to solve for efficient
allocations than competitive equilibria.

• It is important to stress, though, that the welfare theorems
are just theorems. Their connection to the real world is
limited.

• Adam Smith knew nothing about the theorems when he
conceived the invisible hand metaphor. The theorems are
just components of a model that helps to explain why
invisible hand is true.
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The Second Fundamental Theorem of Welfare Economics

• A two consumers Edgworth box economy in which
preferences are convex. In the Equilibrium allocation x∗

offer curves intersect

Figure 6: Walrasian Equilibrium with convex preferences.
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The Second Fundamental Theorem of Welfare Economics
• A one consumer and one producer economy in which the
Pareto optimality can not be supportable as an equilibrium
Maxx1,x2u(x1, x2), s.t. wx1 + px2 ≤ w.L+ π(p, w).

Figure 7: Failure of the 2ed welfare theorem with non-convex
technology.
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The Second Fundamental Theorem of Welfare Economics
• A two consumers Edgworth box economy in which
preferences are not convex.

Figure 8: Failure of the 2ed welfare theorem with non-convex
preferences.
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The Second Fundamental Theorem of Welfare Economics
• A two consumers Edgworth box economy in which
preferences are convex, but the Pareto optimal allocation
(ω1, ω2) cannot be supported as a price equilibrium with
transfers, p = (p1, . . . , pL)� 0 and

∑
i Ti = 0.

Figure 9: Failure of the 2ed welfare theorem with non-convex
preferences.
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The Second Fundamental Theorem of Welfare Economics

• the endowment point is on the north west corner, consumer
1 posses all ω2 and consumer (2) has all good ω1.

• Indifference curves of consumer (2) are vertical and she
desires only good 1.

• Consumer (1) would like to have more x1, but consumer (2)
never inclines for trade.

• If relative prices is p2
p1
> 0 then consumer 2’s optimal

demand is his endowment, but consumer 1’s initial
endowment is never her optimal demand in any relative
prices p2

p1
> 0.

• In any p2
p1
> 0 consumer 1 wishes to buy strictly positive

amount of x1.

• Consumer’s (1) demand for good 2 is infinite when p2
p1

= 0

38 / 74



The Second Fundamental Theorem of Welfare Economics

• the figure 9 illustrates a type of failure of supportability by
means of prices

Both consumers have convex preferences
the corner solution is Pareto allocation
but the allocation (ω1, ω2) can not be supported as a price
equilibrium with transfers;

• the ω2 is an optimal demand for the consumer 2 for any
price vector p = (p1, p2) ≥ 0.

• the ω1 is an optimal demand for consumer 1 for no price
vector p ≥ 0 and wealth level w1

• to tackle the problem one can establish a version of the 2nd

welfare theorem that allows the failure.
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The Second Fundamental Theorem of Welfare Economics

• This is done by defining the concept of a price
quasi-equilibrium with transfers, a weakening form of
price equilibrium with transfers.

• the definition of price quasi-equilibrium with transfers
is identical to that of price equilibrium with transfers
except that the condition[ if xi �i x∗i ], then p.xi > wi is
replaced with xi �i x∗i , then p.xi ≥ wi].
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The Second Fundamental Theorem of Welfare Economics

Definition

price quasi-equilibrium with transfers; Given an economy
specified by ({(%i, Xi)}Ii=1, {Yj}Jj=1, {ω̄}) an allocation (x∗, y∗)
and price vector p = (p1, ..., pL) 6= 0 constitute a price
quasi-equilibrium with transfers if there is an assignment of
wealth levels (w1, ..., wI) with

∑
iwi = p.ω̄ +

∑
j p.y

∗
j such that

1. For every j, y∗j maximizes profit in Yj ; that is
p.yj ≤ p.y∗j for all yj ∈ Yj

2. For every i, if xi �i x∗i then p.xi ≥ wi.
3.

∑
i x
∗
i = ω̄ +

∑
i y
∗
j
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The Second Fundamental Theorem of Welfare Economics
Theorem

The Second Fundamental Theorem of Welfare Economics;
Consider an economy specified by ({(%i, Xi)}Ii=1, {Yj}Jj=1, {ω̄})
and suppose that every Yj is convex and every preference
relation %i is convex [i.e. the upper contour set is convex] and
locally non-satiated. then, for every Pareto optimal allocation
(x∗, y∗), there is a price vector p = (p1, ..., pI) 6= 0 such that
(x∗, y∗, p) is a price quasi-equilibrium with transfers.

Definition

For every i, the set Vi of consumptions preferred to x∗i , that is,
Vi = {xi ∈ Xi : xi �i x∗i } ⊂ RL. then define

V =
∑

i Vi = {
∑

i xi ∈ RL : x1 ∈ V1, ..., xI ∈ VI}
and

Y =
∑

j Yj = {
∑

j yj ∈ RL : y1 ∈ Y1, ..., yJ ∈ YJ}
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The Second Fundamental Theorem of Welfare Economics

• Thus, V is the set of aggregate consumption boundless,
which each of them is strictly preferred to x∗i .

Example: A = [0, 1], B = {1} then A+B = [1, 2] but
A ∪B = [0, 1]

• The set Y is simply the aggregate production set

• And the Y + {ω̄} is the aggregate production set with its
origin shifted to ω̄.

Proof.

1. Every set Vi is convex. Proof by contradiction, In class.

2. The set V and Y + {ω̄} are convex set. Proof by the
definition of aggregated sets, In class.
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Proof.

Let A, B be any two convex subsets of RL. That is, for any
element x, y of A (resp. of B), and any real scalar t in [0,1], the
"convex combination":

tx+ (1− t)y

again belongs to A (resp. to B).

First we will show that the set A+B (formed by taking all
terms a+ b where a ∈ A, b ∈ B) is again a convex set. For
suppose x+ y and x′ + y′ are any two points in A+B, naturally
with x, x′ in A and y, y′ in B. Given real t in [0,1], we know:
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Proof.

Conti.

tx+ (1− t)x′ ∈ A
ty + (1− t)y′ ∈ B

and therefore:

tx+ (1− t)x′ + ty + (1− t)y′ = t(x+ y) + (1− t)(x′ + y′)

will also belong to A+B. Therefore A+B is shown to be
convex.
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The Second Fundamental Theorem of Welfare Economics

Figure 10: two separated sets

Proof.

3. V ∩ (Y + {ω̄}) = ∅. Proof by the definition of Pareto
optimality and the sufficient condition of the theorem,
Proof in class.
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The Second Fundamental Theorem of Welfare Economics

Figure 11: Separating hyperplane theorem, C ∩D = ∅
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The Second Fundamental Theorem of Welfare Economics
Proof.

4. There is p = (p1, ..., pL) 6= 0 and a number r such that
p.z ≥ r for every z ∈ V and p.z ≤ r for every
z ∈ Y + {ω̄},Proof in class.

5. If xi %i x∗i for every i then p.(
∑

i xi) ≥ r.

Definition
Open Sets and Limit Points: A point xx is a limit point of a
set AA iff there exists a sequence (an)?A(an)?A, satisfying
an?xan?x, that converges to xx. Note that xx need not be a
point in AA. where AA = [0, 1) then,

lim
n→∞

xn = lim
n→∞

(1− 1/n)

a point for which every neighbourhood contains at least one
point belonging to a given set.
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The Second Fundamental Theorem of Welfare Economics

Proof.

6. p.(
∑

i x
∗
i ) = p.(ω̄ +

∑
j y
∗
j ).

7. For every j, we have p.yj ≤ p.y∗j for all yj ∈ Yj .

8. For every i, if xi �i x∗i , then p.xi ≥ p.x∗i .

9. The wealth levels wi = p.x∗i for i = 1, ..., I support
(x∗, y∗, p) as a price quasi-equilibrium with transfer.

Conditions (i) and (ii) of definition (16.D.1) follow from steps 7
and 8, condition (iii) follows the feasibility of the Pareto optima
allocation (x∗, y∗).�
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The Second Fundamental Theorem of Welfare Economics:
Some of practical limitations

• The Second Fundamental Theorem of Welfare Economics
identifies conditions under which any Pareto optimal
allocation can be implemented throgh competitive markets.

• But there are some practical limitations on the use of this
theoretical result.

• First, a central planner must be able to insure that the
supporting prices (p1, ..., pL) will be taken as given by
consumers and firms.

• If the market structure is such that price taking would not
automatically hold, then the planer must be able to enforce
it.
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The Second Fundamental Theorem of Welfare Economics:
Some of practical limitations

• A Second observation is that the central planer must
have very good information indeed.

• It must have good information to Identify the Pareto
optimal allocation to be implemented and it must have the
ability to tell who is who by observing her preferences and
endowments perfectly.

• Such information is rarly available for him in practice, as a
result he has to make the transformation in lump-sum from.

• Finally, even if he has all the required information, it must
actually have the power to enforce the necessary wealth
transfers through a tax mechanism that individuals can not
evade.
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Pareto Optimality and Social Welfare Optima
• This section discuss the relationship between pareto
optimality and optimization ofa social welfare function.

• The utility possibility set:
U = {(u1, ..., uI) ∈ RI : there is a feasible allocation(x, y)
such that ui ≤ ui(xi) for i = 1, ..., I}.

Figure 12: the utility possibility set and a convex utility
possibility set. If every Xi and every Yj is convex set, and if
each%i is convex, then U is a convex set
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Pareto Optimality and Social Welfare Optima

• Pareto Frontier UP , Definition:

Definition
By the definition of Pareto optimality, the utility values of a
Pareto optimal allocation must belong to the boundary of the
utility set.
UP = {(u1, ..., uI) ∈ U : there is no (u′1, ..., u

′
I) ∈ U such that

u′i ≥ ui for all i and u′i > ui for some i}.

• then the following proposition is intuitive.

Theorem
A feasible allocation (x, y) = (x1, ..., xI , y1, ..., yJ) is a Pareto
optimum if only if (u1(x1), ..., uI(xI)) ∈ UP .
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Social welfare function and distributional concerns

• Suppose that society’s distributional principles are
summarized in a social welfare function W (u1, ..., uI).

• a simple form of the W (.) is the linear one, however, the
Rawlsian social welfare function which very popular in the
distributional issues is of the following form:

W (u1, ..., uI) = Min{u1, ..., uI}

• The linear form of the SWF is;
W (u1, ..., uI) =

∑
i λiui

where the λi are some λi ≥ 0 constants.

• With this Linear SWF, a feasible optimal value for ui is
resulted from constrained maximization, Max

u∈U
λ.u
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Social welfare function and distributional concerns

• a social distribution depends on the λs.

Figure 13: maximizing a linear social welfare function.
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Pareto Optimality and Social Welfare Optima

Figure 13 depicts the solution to problem Max
u∈U

λ.u. The result is

presented in following theorem:

Theorem

• If u∗ = (u∗1, ..., u
∗
I) is a solution to the social welfare

maximization problem Max
u∈U

λ.u with λ� 0, then u∗ ∈ UP ,
that is u∗ is the utility vector of a Pareto optimal allocation.

• Moreover, if the utility possibility set U is convex, then for
any ũ = (ũ1, ..., ũI) ∈ UP , there is a vector of welfare
weights λ = (λ1, ..., λI) ≥ 0, λ 6= 0, such that λ.ũ ≥ λ.u for
all u ∈ U , that is, such that ũ is a solution to the social
welfare maximization problem Max

u∈U
λ.u.
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Pareto Optimality and Social Welfare Optima

Proof.

• Proof by Contrapositive: If u∗ = (u∗1, ..., u
∗
I) were not

Pareto optimal, then there would exist a u ∈ U with
u ≥ u∗; and so because λ� 0 , we would have λ.u > λ.u∗.

• Proof by the supporting hyperplane theorem. Note
that if ũ ∈ UP , then ũ is boundary of U . By the
supporting hyperplane theorem there exist a λ 6= 0 such
that λ.ũ ≥ λ.u for all u ∈ U .
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Social welfare function and distributional concerns

Figure 14: the supporting hyperplane theorem.
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linear Social welfare function and Pareto optima

• The just proved theorem tells us that for economies with
convex utility possibility sets, there is a close relation
between Pareto optima and linear social welfare optima.

• Every linear social welfare optimum with λ� 0 is Pareto
optimal, and also the reverse is true for some
(λ1, ..., λI) ≥ 0.
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First-Order conditions for Pareto optimality

• How prices and the optimality properties of price taking
behavior emerge from an examination of the first order
conditions associated with Pareto optimality problem?

• some assumptions;
ui(xi) are twise continuously differentiable and satisfy
∇ui(xi)� 0 at all xi, suggesting that %i is strongly
monotone.

For every j the production set is Yj = {y ∈ RL : Fj(y) ≤ 0},
where Fj(y) = 0 defines the production frontier.

∇Fj(yj) = (∂Fj(yj)/∂y1j , ..., ∂Fj(yj)/∂yLj)� 0 for all
yj ∈ RL.

what does this assumption mean?
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First-Order conditions for Pareto optimality
• The problem of Pareto optimal allocation identification to
select (x, y) = (x1, ...xI , y1, ..., yJ) ∈ RLI

+ ×RLJ

Max u1(x11, ..., xL1) (1)
s.t. ui(x1i, ..., xLi) ≥ ūi i = 1, ..., I (2)∑
i

xli ≤ ωl +
∑
j

ylj l = 2, ..., L (3)

Fj(y1j , ..., yLj) ≤ 0 j = 1, ..., J (4)

L = u1(x11, ..., xL1) +
∑
i=2

δi[ui(x1i, ..., xLi)− ūi]

+
∑
l

µl[ωl +
∑
j

ylj −
∑
i

xli]+∑
j

γj [0− Fj(y1j , ..., yLj)]
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First-Order conditions for Pareto optimality

∂L/∂xli = ∂ui(xi)/∂xli − µl ≤ 0 (5)
∂L/∂xl′i = ∂ui(xi)/∂xl′i − µl′ ≤ 0 (6)

i = 1, l = 1, 2, ..., L, l 6= l′ (7)

∂L/∂xli = δi∂ui(xi)/∂xli − µl ≤ 0 (8)
∂L/∂xl′i = δi∂ui(xi)/∂xl′i − µl′ ≤ 0 (9)
i = 2, ..., I, l = 1, 2, ..., L, l 6= l′ (10)

∂L/∂ylj = µl − γj∂Fj(yj)/∂ylj ≤ 0 (11)
∂L/∂yl′j = µl′ − γj∂Fj(yj)/∂yl′j ≤ 0 (12)
∂L/∂yl′j′ = µl′ − γj′∂Fj′(yj′)/∂yl′j′ ≤ 0 (13)
∂L/∂ylj′ = µl − γj′∂Fj′(yj′)/∂ylj′ ≤ 0 (14)
j = 1, 2, ..., J, l = 1, 2, ..., L, l 6= l′, j′ 6= j (15)
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First-Order conditions for Pareto optimality

• The value of µl at optimal solution is exactly the increase
in the utility of consumer 1 from marginal increase in the
available social endowment ω̄l, Equations (5) and (6).

• δi reflects the marginal change in the consumer’s 1 utility
when a decrease in the ui, i = 2, 3, ..., I is realized. Recall
that δi = ∂u1

∂ui
, ; i > 1

• Therefore conditions (8) and (9) show that, at an interior
optimal allocation, the increase in the utility of any
consumer i from receiving an additional unit of good l,
weighted consumer i′s utility constraint is worth in terms of
raising consumer 1’s utility, should be equal to the marginal
value µl of good l. That is

∂u1
∂ui

∂ui
∂xli

= µl.
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First-Order conditions for Pareto optimality

• The multiplier γj is the marginal benefit from relaxing the
jth production constraint, or the marginal cost of
tightening it. Recall that γj = ∂u1

∂Fj
, ; j = 1, ..., J

• Hence, γj(∂Fj/∂yli) is the marginal cost of increasing in ylj .
∂u1
∂Fj

∂Fj

∂yli
= µl

• at the optimum of u1 this marginal cost is equated, for
every j, to the marginal benefit µl of good l.

• If the solution for the first order conditions is interior,
xi � 0, yj � 0, then the conditions (5)-(15) will give us;
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First-Order conditions for Pareto optimality

∂ui/∂xli
∂ui/∂xl′i

=
∂ui/∂xli′

∂ui′/∂xl′i′
= µl/µl′ ∀ i.i′, l, l′ (16)

∂Fj/∂ylj
∂Fj/∂yl′j

=
∂Fj/∂ylj′

∂Fj′/∂yl′j′
= µl/µl′ ∀ i.i′, l, l′ (17)

∂ui/∂xli
∂ui/∂xl′i

=
∂Fj/∂ylj
∂Fj/∂yl′j

= µl/µl′ ∀ i.i′, l, l′ (18)

• The condition (18) says that every consumer’s marginal
rate of substitution must equal every firm’s marginal rate of
transformation for all pairs of goods.

• Imagine an economy with 2 goods, one consumer and one
firm
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Relationship between the first order conditions and the
first and second welfare theorems

• preference relations are convex
• production sets are convex
• Conditions (5)-(15) are used to established a version of the
two theorems.

• Let (x∗, y∗, p) is a price equilibrium with transfers IFF the
first order condition for utility maximization, profit
maximization and a linear social welfare function are
satisfied.

Max ui(xi) (19)
s.t. p.xi ≤ wi (20)
Max p.yj (21)

s.t. Fj(yj) ≤ 0 (22)
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Relationship between the first order conditions and the
first and second welfare theorems

• Denoting by αi and βj the respective multipliers for the
optimization problem, the FOC is derived as follows:

xli :
∂ui
∂xli

− αipl ≤ 0 ∀i, l (23)

ylj : pl − βj
∂Fj
∂ylj

≤ 0 ∀j, l (24)

• Letting µl = pl, δi = 1/αi and γj = βj
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Maximization of social welfare function subject to social
resources

• In a linear social welfare function setting one can show that
optimal solution for a maximization problem corresponds to
Pareto optimum allocation.

• Consider the problem:

Maxx,y
∑
i

λiui(x1i, ..., x1i) (25)

s.t.(1)
∑
i

xli ≤ ω̄l +
∑
j

ylj l = 1, ..., L (26)

(2)Fj(y1j , ..., yLj) ≤ 0 l = 1, ..., L (27)
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Maximization of social welfare function subject to social
resources, FOC

• The first order condition for the optimization program is:

Maxx,yL =
∑
i

λiui(x1i, ..., x1i) +
∑
l

ψl[ω̄l +
∑
j

ylj −
∑
i

xli]

(28)

+
∑
l

ηl[0− Fj(y1j , ..., yLj)] (29)

xli : λi
∂ui
∂xli

− ψl ≤ 0 ∀i, l (30)

ylj : ψl − ηj
∂Fj
∂ylj

= 0 ∀j, l (31)
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• By letting δi = λi
λ1
, µl = ψl

λ1
and γ =

ηj
λ1
, we have and exact

correspondence between FOC in pareto optimality program
and the FOC above.

Theorem

Under the assumptio made about the economy, including, the
concavity of ui(.) and the convexity of Fj(.), every Pareto
optimal allocation and price equilibrium with transfers,
maximizes a weighted sum of utilities s.t. te resources and
technologies.
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Some applications, interpretations of Commodity Space

• Contingent commodities
One commodity in uncertain states

• Occupational Choice
Two person with consumption goods and labor supply for
two alternative jobs, classic scholar and economics
professors.

• Public Goods, Lindahl Equilibrium
One private good ( labour) and a public good. The private
good is used to produce the public good.
The problem of missing market for public goods is solved in
the framework of Pareto allocation as a personalized good
with market prices p2i.
The resulted price equilibrium still is Pareto optimal, and
there is a vector of prices which supports the Pareto
equilibrium.
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Public Goods, Lindahl Equilibrium, a formal
representation

• a private good, x1i which is tradable in the market forp1i

• a public good which at the first look does not seem to be
tradable in the market, but one can modify the Walrasian
equilibrium to find a market solution for its allocation
between users of the good. HOW?

• consumers’ locally non-satiated preferences %i are defined
on consumption set R2

+.
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Public Goods, Lindahl Equilibrium, a formal
representation

• the economy is only endowed with ω̄1 and a firm which
transforms amounts of z, the private good, into the public
good by making use of a concave production technology
f(z).

• An allocation ((x11, ..., x1I , x2), (q, z) ≥ 0 is feasible if

q ≤ f(z),
∑
i

x1i + z = ω̄1)

and q = x2.
• A typical consumer cares about the amount of personal
commodity that she receives, therefore we denote her
consumption bundle by xi = (x1i, x2i).
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Public Goods, Lindahl Equilibrium, a formal
representation

• The single firm’s convex production (technology) set is:

Y = {(−z, q1, ..., qI) ∈ RI+1
+ : z ≥ 0 and q1 = ... = qI = q ≤ f(z)}

• A Lindahl Equilibrium
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