

Externalities and Public goods Part 2

GholamReza Keshavarz Haddad

Sharif University of Technology Graduate School of Management and Economics

May 18, 2020

Haddad (GSME)

Microeconomics II 1 / 13

Outline

1 Private Information and Second-Best Solution

2 Centeralized Solution: Policy mechanisms

Private Information

- In practice, the degree to which an agent is affected by an externality is often be known only to her.
- The private (asymmetric) information can confound both centralized(quotas and taxes) and decentralized (bargaining)solutions to achieve the social optimum.

Private Information and Second-Best Solution: The formal model

- Consumer's derived utility function is φ(h,η), where h is externality and η stands for the type of consumer's preference
- Firm's derived profit function is $\pi(h, \theta)$, where *h* is externality and θ is its type.
- Actual value of the θ and η are privately observed
- Give values of θ and η, the π(h, θ) and φ(h, η) are strictly concave in h

Private Information and Second-Best Solution: The formal model

- Let assume that consumer has the right to and externality free environment.
- There is a Take-it-or-Leave-it bargaining processes offer to the firm.
- Two possible level of externality: 0 or $\bar{h} > 0$.
- Our focus is centered on the negative externality on the consumer
- Firm's benefit from externality is measured by $b(\theta) = \pi(\bar{h}, \theta) \pi(0, \theta) > 0$
- Consumer's cost from externality level *h* is measured by $c(\eta) = \phi(0, \eta) \phi(\bar{h}, \eta) > 0$

Private Information and Second-Best Solution: The formal model

- We denote the probability distribution function of $b(\theta)$ and $c(\eta)$, respectively by G(b) and F(c).
- Let assume that $\bar{h} > 0$ is the Pareto efficient level of externality for b > c.

Decenteralized Bargaining Solution Failure

- Consider T as the amount that the consumer will demand from the firm for the cost c in exchange for the permission of producing the externality related product.
- A simple lottery for the consumer:

b	$b(\theta) < T$	$b(\theta) \geqslant T$
p(b)	$p(b(\theta) < T)$	$p(b(\theta) \ge T)$
Consumer's payoff	T-c	T-c

$$p(b(\theta) \ge T) = 1 - G(T)$$

The consumer knows that, the firm will never accept to pay $b(\theta) < T$.

Decenteralized Bargaining Solution Failure

 The consumer's payoff from b(θ) < T is always zero (because T = 0 and c = 0, and T - c is zero as well), therefore her expected payoff of the lottery is:

$$Max_T[1-G(T)](T-c)$$

- She optimally chooses T to maximize the objective function. item The objective function is strictly positive for T c and equals zero for T = c
- Assume that $T_c^* = argmax[1 G(T)](T c)$, then, there is potential solution $T_c^* > b$.
- The solution implies a positive probability of inefficient outcome, namely h = 0 rather than \bar{h}

Centeralized Solution: Unobservability of the marginal values

The problem of unobservable marginal values

Centeralized Solution: Unobservability of the marginal values

- A problem in centralized and decentralized solution for externality is the unbservibility of marginal values (benefits b(θ, h) and costs c(η, h)).
- The parties involved in the game may not have incentive to reveal them truthfully
 - The consumer has incentive to exaggerate her cost of h
 - The producer will have an incentive to under-report his benefits from *h*
- How to design mechanisms that control that control these incentives for misreporting?
- The question is studied in the Mechanism design scope.

Centeralized Solution: a model for revelation mechanism

- Can we design a scheme that achieves the optimal level of externality h
 ā generation for every realization of b and c? YES
- **1** The firm and the consumer are asked to report their values of *b* and *c* and they report $\hat{b} = \pi(0,\theta) \pi(\bar{h},\theta) = \Delta\pi$ and $\hat{c} = \phi(0,\eta) \phi(\bar{h},\eta) = \Delta\phi$
- **2** For each pair of (\hat{b}, \hat{c}) , the government sets an allowed level of *h* as well as a **tax** \hat{c} <u>or</u> **subsidy** \hat{b} to maximize the aggregate surplus $\pi(\theta, h) + \phi(\eta, h)$
- **3** The allowed level of *h* is \overline{h} if only if $(\hat{b} > \hat{c})$.
- The tax rate on firm's activity is \hat{c} and subsidy rate for consumer is \hat{b} .

Centeralized Solution: a model for revelation mechanism

- If the firm wants to generate the externality, it is required to pay the cost of that as declared by consumer
- If the consumer allows the firm to produce the externality, she will receive the payment which amounts to (\hat{b}) reported by the firm.

Under this plan both the firm and consumer will tell the truth HOW?

Centeralized Solution: a model for revelation mechanism

That setting of the game between the government, Firm and Consumer will guaranty the optimal level of $h = \bar{h}$ for every possible (b, c) pair.

- The consumer prefers to have the externality involved activity allowed, because she will do better $\hat{b} - c$.
- Hence her optimal announcement satisfies $\hat{c} < \hat{b}$
- Any such announcement will give her the same payoff, she has no incentive to be untruthful

- **2** Firm announces some $\hat{b} \leq c$
 - The consumer prefers to have externality level set to ZERO
 - **Hence**, she would like announce $\hat{c} \ge \hat{b}$
 - Again, any of these \hat{c} announcements will give her the same payoff

Telling the truth is a weakly dominant strategy for the consumer

Haddad (GSME)

Microeconomics II 13/13