
Dynamic Games: SPNE

GholamReza Keshavarz Haddad

Sharif University of Technology
Graduate School of Management and Economics

April 28, 2020

Haddad (GSME) Microeconomics II 1 / 71



Outline

1 Introduction

2 Dynamic Games of Complete Information

3 Two-Stage Games of Complete but Imperfect
Information

4 Subgame-Perfect Nash Equilibria

5 Criticisms of Subgame Perfection

6 Repeated Games

Haddad (GSME) Microeconomics II 2 / 71



Introduction

So far, we have studied games with Nash ( Pure or Mixed)
Equilibria and games with Bayesian perfect Equilibria

Timing
Simultaneous Sequential

In
fo
rm
at
io
n

C
om
pl
et
e

Nash Sub-game Perfect
Nash Equilibrium

In
co
m
pl
et
e

Bayesian Nash ?

Haddad (GSME) Microeconomics II 3 / 71



Introduction

This part intends to analyze dynamic games that have not
only complete but also perfect information.

• At each move in the game the player with the move knows
the full history of the play of the game thus far.

We now turn to study of sequential or dynamic games, i.e.
games where players are not moving simultaneously, but
rather in a sequence over time.

We, again, restrict attention to games with complete
information

• i.e., games in which the players’ payoff functions are
common knowledge
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Introduction

Summary
The key features of a dynamic game of complete and perfect
information are that:

1 the moves occur in sequence,
2 all previous moves are observed before the next move is
chosen,

3 the players’ payoffs from each feasible combination of
moves are common knowledge.

Central issue in all dynamic games is credibility.

The underlying theme will be to refine the set of Nash
equilibria in these games.

• The problem is that certain Nash equilibria in dynamic
games can be very implausible predictions.
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Introduction

The Nash equilibrium concept does not suffice to rule out
non-credible strategies

We will introduce a stronger solution concept, known as
Subgame Perfect Nash Equilibrium , that helps to do so.

The central idea underlying this concept is the Principle of
Sequential Rationality .

Definition (Principle of Sequential Rationality)
Equilibrium strategies should specify optimal behaviour from
any point in the game onward.
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Introduction

The principle is intimately related to the procedure of
Backward Induction .
The concept of subgame perfection is not strong enough
to fully capture the idea of Sequential Rationality in
games of imperfect information

We then introduce the notion of of aWeak Perfect
Bayesian equilibrium to find equilibrium strategies with
beliefs .

Player’s Beliefs explicitly shows what has occurred prior
to her move as a means of testing the sequential
rationality of the player’s strategy.
Why we use the adjectiveWeak ?
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Dynamic Games of Complete and perfect Information

Example (Non-credible threat)
Consider the following two-move game.
Suppose player 2 threatens to explode the grenade unless
player 1 pays the $1,000.

If player 1 believes the threat, then player l’s best
response is to pay the $1,000.

Noncredible threat:
• But player 1 should not believe the threat, because it is
Non-credible.

• if player 2 were given the opportunity to carry out the
threat, he would choose not to carry it out.

• Thus, player 1 should pay player 2 nothing.
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The Idea of Non-Credible Threads

Example (Implausibility of some Nash Equilibria)

Consider the following game, given in both normal-form
and extensive-form.

P2
Fight Accommodate

P1
Out 1, 2 1, 2
Enter 0, 0 2, 1

This game has two Nash equilibria: (Out, Fight) and
(Enter(In), Accommodate).
If we think of the players as selecting plans before the
game starts, then the NE profile (Out, Fight) makes some
sense (a potential situation), it is a rational choice ex ante.
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The Idea of Non-Credible Threads: Example

Note that in that game, some of the Nash equilibria seem
distinctly less intuitive that others.

In the (Out, Fight) equilibrium, it is the threat of Fight
that keeps Firm 2 from entering. However, if Firm 2 were
to enter, is it reasonable to think that Firm 1 will actually
fight?

At this point, it is not in Firm 1’s interest to Fight, since it
does better by Accommodating.

In fact, she would do everything in her power to convince
player 1 that she will play Out, so that he plays Out.
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The Idea of Non-Credible Threads: Example

While player 2 might "threaten" to play Fight before the
game starts, if the game proceeds and it is actually her
turn to move, then Out is not rational.

The threat is not credible, and player 1 should realize this
and play Enter(In).
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Dynamic Games of Complete and perfect Information

Thus, Fight might be a reasonable plan for player 2 if she
thinks player 1 will play Out, but it is not rational to carry
out the plan after player 1 plays Enter(In).

It is not sequentially rational for player 2 to play Fight.

Definition (Sequentially Rational Strategy)
A player’s strategy exhibits sequential rationality if it maximizes
his or her expected payoff, conditional on every information set
at which he or she has the move. That is, player i ’s strategy
should specify an optimal action at each of player i ’s
information sets, even those that player i does not believe will
be reached in the game.
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Dynamic Games of Complete and perfect Information

There are games that have multiple Nash equilibria, some
of which are unrealistic.

In the case of dynamic games, unrealistic Nash equilibria
might be eliminated by applying backward induction ,
which assumes that future play will be rational.

It therefore eliminates non-credible threats because such
threats would be irrational to carry out if a player was
ever called upon to do so.
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Dynamic Games of Complete and perfect Information

For games of perfect information (all singleton information
sets), backward induction is the process of "looking ahead
and working backwards" to solve a game based on
common knowledge of sequential rationality:

1 Start at each node that is an immediate predecessor of a
terminal node, find the optimal action for the player who
moves at that node, and change that node into a terminal
node with the payoffs from the optimal action.

2 Apply step 1 to smaller and smaller games until we can
assign payoffs to the initial node of the game.
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Dynamic Games of Complete and perfect Information

Looking ahead to player 2’s decision node, her optimal
choice is Accommodate, so we can convert her decision
node into a terminal node with payoffs (2,1).

In the smaller game, player 1 can either choose Out and
reach the terminal node with payoffs (1,2), or Enter(In)
and reach the terminal node with payoffs (2,1).

Player 1’s optimal choice is Enter(In). Backward induction
leads to the strategy profile (Enter(In), Accommodate),
with payoffs (2,1).
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Dynamic Games of Complete and perfect Information
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Dynamic Games of Complete and perfect Information

In the smaller game, player 1 can either choose Out and
reach the terminal node with payoffs (1,2), or Enter(In)
and reach the terminal node with payoffs (2,1).

Player 1’s optimal choice is Enter(In).

Backward induction leads to the strategy profile
(Enter(In), Accommodate), with payoffs (2,1).
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Dynamic Games of Complete and perfect Information, MWG

9.B.3

Consider the three-player finite game of perfect
information
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Dynamic Games of Complete and perfect Information, MWG

9.B.3

Player 1’s action set S1 = {L ,R }
Player 2’s action set S2 = {a , b }
Player 3’s action sets S31 = {l1, r1}, S32 = {l2, r2} and
S33 = {l3, r3}
Player 3’s entire strategy set
S3 = {l1, r1} × {l2, r2} × {l3, r3}
Then S3 = {(l1l2l3), (l1l2r3), (l1r2l3), (l1r2r3),

(r1l2l3), (r1l2r3), (r1r2l3), (r1r2r3)}
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Dynamic Games of Complete and perfect Information, MWG

9.B.3

Normal form game of perfect information
From this normal form representation, we can identify six
pure strategy Nash Equilibria:

To find the SPNE, we must perform backwards induction
on our extensive form game.
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Dynamic Games of Complete and perfect Information, MWG 9.B.3

Proper Subgames of the Extensive Form
Starting with subgames 1, 2 and 3, we can evaluate player
3’s decisions at each subgame

It is clear that in subgame 1, player 3 will choose strategy
r1 since his payoff of 6 from selecting r1 is greater than his
payoff of 1 from selecting l1.
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Dynamic Games of Complete and perfect Information

Example (Cold War between Soviet Union and United
States)

An international crisis in October 1962, the closest
approach to nuclear war at any time between the US and
the Soviet Union.

When the US discovered Soviet nuclear missiles on Cuba,
President John F. Kennedy demanded their removal and
announced a naval blockade of the island; the Soviet
leader Nikita Sergeyevich Khrushchev acceded to the US
demands a week later.

When the US found out, President Kennedy discussed the
options (i) do nothing, (ii) air strike on the missiles, (iii) a
naval blockade of Cuba.
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Dynamic Games of Complete and perfect Information

Example (Cold War between Soviet Union and United
States)

If the missiles are in place, JFK must decide on (i) nothing,
(ii) air strike, or (iii) blockade.
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A more complicated example: Cuban Missile Crisis.

Example (Cold War between Soviet Union and United
States, Cont.)

If JFK decides on air strike or blockade, Khrushchev must
decide whether to acquiesce or escalate.
JFK would optimally choose blockade, leading to payoff
(3,5).
Khrushchev’s optimal choice is status quo (4,3), since he
receives a higher payoff than placing the missiles (3,5).
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Dynamic Games of Complete and perfect Information

Common feature of the games just studies are dynamic in
moves, and with complete and perfect information:

• first player 1 moves, then player 2 observes player l’s
move, and takes its action. Finally, player 1 moves and the
game ends.
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Dynamic Games of Complete and perfect Information

Example
Stackelberg model of duopoly game as a Motivating
example for backwards induction
Stackelberg’s (1934) model of duopoly belongs to the
Dynamic games class.
Two payoff maximizer firms with u1(s1, s2) and u2(s1, s2)

Firm one is leader in the market and Firm two is follower
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Dynamic Games of Complete and perfect Information

Example
Stackelberg model of duopoly game, cont.
Both the firms are aware of the payoff structures and rule
of the game.

• The leader (Firm 1) will take the first action and then, after
observing the action by firm 2, Firm 2 will decide which
action maximizes its payoff

Firm 1 is aware of the way that firm 2 makes its decision.
Firm 1 will take that information in its consideration in
stage 1 of the game.

Firm 2’s decision depends on s1, i.e. given the action s1
previously chosen by player 1:

maxs2∈S2u2(s1, s2)
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Dynamic Games of Complete and perfect Information

Example
Stackelberg model of duopoly game, cont.
Assume that for each s1 ∈ S1, player 2’s optimization
problem has a unique solution such that s2 = R2(s1), the
player 2’s reaction to player 1’s action.
Since player 1 can solve 2’s problem as well as 2 can,
player 1 should anticipate player 2’ s reaction to each
action that 1 might take, so 1’s problem at the first stage
amounts to:

maxs1∈S1u1(s1, s2 = R2(s1))

Assume that this optimization problem for player 1 also
has a unique solution, denoted by s ∗1 .
The (s ∗1 ,R2(s

∗
1)) is called backwards- induction outcome

of this game.
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Economic model of Stackelberg Duopoly

Example (Stackelberg Duopoly)

Firm 1 leader and Firm 2 follower
The payoffs are profit function πi

πi (qi ,qj )) = [p (Q )− c ]qi

where Q = qi + qj and p = a −Q
To solve for the backwards-induction outcome of this
game, we first find firm 2’s reaction to an arbitrary
quantity by firm 1, which gives us q2 = R (q1).

maxq2π2(q1,q2) = maxq2 [a − q1 − q2 − c ]q2

which yields R (q1) = a−q1−c
2

the payoffs and the reaction function, by assumption, are
common knowledge.
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Economic model of Stackelberg Duopoly

Example (Stackelberg Duopoly, Cont.)

Thus, firm l’s problem in the first stage of the game
amounts to:

maxq1π1(q1,R (q1)) = maxq1 [a − q1 − R (q1)− c ]q1

which yields q ∗1 = a−c
2 and R (q

∗
1) =

a−c
4

Compare them with the equilibrium strategies for Cournot
game in which each firm produces a−c3 .
Informational advantages of the Leader Firm [q2 = R (q1)]
allows it to have higher share in the market
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Summary: backward induction

In Summary. We can apply this logic to any extensive
game in the following way:
start at the "end" of the game tree, and work "back" up to
initial node of the tree by solving for optimal behavior at
each node.
This procedure is known as backward induction. In the
class of finite games with perfect information (finite
number of nodes and singleton information sets), this is a
powerful procedure.

The concept of backward induction corresponds to the
assumption that it is common knowledge that each player
will act rationally at each future node where he moves
even if his rationality would imply that such a node will not
be reached.
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Summary: backward induction

Theorem
Zermelo. Every finite game of perfect information has a pure
strategy Nash equilibrium that can be derived through
backward induction. Moreover, if no player has the same
payoffs at any two terminal nodes, then backward induction
results in a unique Nash equilibrium.
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Summary: backward induction

Every finite game of perfect information has a pure
strategy Nash equilibrium.

Zermelo’s Theorem says that backward induction can be
powerful in various finite games.

For example it implies that even a game as complicated as
chess is solvable through backward induction, if one is able
to design its extensive form for all of contingent plans.

In this sense, chess is "solvable" although, no-one knows
what the solution is!
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Subgame Perfection

In extensive-form games with imperfect information
backward induction can be problematic, because a player’s
optimal action depends on which node she is at in her
information set.
Still, sequential rationality can be captured by the concept
of subgame perfection.
What do we mean by a subgame?

Definition
Given an extensive-form game tree, a node x initiates a
subgame if neither x nor any of its successors are in an
information set containing nodes that are not successors of x .
The tree defined by x and its successors is called a subgame.
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Subgame Perfection

Notice that:
1 Any game is a subgame of itself. Subgames other than the
original game itself are called proper subgames.

2 For games of perfect information, every node other than a
terminal node defines a subgame.

3 Any subgame is a game in its own right, satisfying all of our
rules for game trees.
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Subgame-Perfect Nash Equilibria

Example (A game with sevral subgames)

Here is a game with 4 subgames.
1 Find the Strategic form representation
2 Find all Nash equilibria
3 Find all Subgame-Perfect Nash Equilibria
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Subgame-Perfect Nash Equilibria

Example (A game with sevral subgames)

Sets of player one’s actions at each information set is:
A1 = {A ,B } and A2 = {G ,H }
So, her strategy set is derived as the Cartesian product of
the sets:

S1 = {A ,B } × {G ,H } = {AG ,AH ,BG ,BH }

In the same manner we can find that for player two

S2 = {C ,D } × {E , F } = {CE ,CF ,DE ,DF }

Then, the set of strategy profiles are:

S = S1 × S2 = {(AG ,CE ), (AH ,BE ), ...}
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Subgame-Perfect Nash Equilibria

Example (A game with sevral subgames)

the Strategic form representation of the game
Two Nash Equilibria, Which on is credible?

Player 2
CE CF DE DF

AG 3, 8 3, 8 8, 3 8, 3
Player 1 AH 3, 8 3, 8 8, 3 8, 3

BG 5, 5 2, 10 5, 5 2, 10
BH 5, 5 1, 0 5, 5 1, 0

One of the Nash equilibrium strategies is σ = (BH ,CE ), is
that credible?
Let’s take a look on the extensive form game in more
details
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Subgame-Perfect Nash Equilibria
Example (A game with sevral subgames)

The pure strategy σ = (BH ,CE ) is represented by red
lines in the figure

Can player two profitably deviate from her current choice?
What can she do? see the green lines

Can player two can profitably deviate from her current
choice? what could he do? follow the blue lines
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Subgame-Perfect Nash Equilibria
Example (A game with sevral subgames)
So, neither of the players can profitably deviate from their
current strategy.
Again assume that player 1, is going to choose BH and
let’s focus on this subgame.
Why wouldn’t player 1 actually do H? Because a G
dominates it, an the Nash Equilibrium is G
Why wouldn’t player 2 actually do F rather than E? there
is non-credible threat H by player 1.
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Subgame-Perfect Nash Equilibria

The examples show that, in finite games with perfect
information every decision initiates a sub-game.

Example (A game with imperfect information)
Parts of a game which is not a sub-game
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Subgame-Perfect Nash Equilibria
Example (Principle of Sequential Ratinality for games
of imperfect information)

Consider the following two person game played by an
Entrant E and an Incumbent I.
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Subgame-Perfect Nash Equilibria

Example (Principle of Sequential Ratinality for games
of imperfect information)

Sets of player E’s actions: SE 1 = {Out , In},
SE 2 = {Fight ,Accommodate}, accordingly her strategies
set is: SE = SE 1 × SE 2
Set of player I’s actions: S12 = {Fight ,Accommodate}
In the game there are three pure three pure strategy Nash
Equilibria (σE , σI )

• ((Out, Acc if In ), (fight if E plays "In" ))
• ((Out, Fight if In ), (fight if E plays "In" ))
• ((In, Acc if In ), (Acc if E plays "In" ))

(Acc, Acc ) is the sole Nash Equilibrium in post entry game.
payoff from entry for Player E, 3 is greater than 0 staying
out
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Subgame Perfect Nash equilibrium

Definition
subgame perfect Nash equilibrium: A strategy profile for an
extensive-form game is a subgame perfect Nash equilibrium
(SPNE) if it specifies a Nash equilibrium in each of
its subgames.

Every SPNE must also be a NE, actually by this way we are
refining the NEs.
For finite games of perfect information, any backward
induction solution is a SPNE and vice-versa.
The advantage of SPNE is that it can be applied to games
of imperfect information too.
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Subgame-Perfect with multiple Nash Equilibria

Example

Sets of player E’s actions at each information set is:
E1 = {Out , In} and E2 = {Small Niche , Large Niche}
Set of player I’s actions at its information set is:
I1 = {Small Niche , Large Niche}
Then, the set of strategy profiles of the Game is derived
by:

S = E1 × E2 × I1 = {(Out ,Small Niche ,Small Niche ),

(Out ,Small Niche , Large Niche ), ...}
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Subgame-Perfect with multiple Nash Equilibria

Lets consider the example of Predation with Niches: Firm
E, (the potential Entrant) first chooses to enter or not. If
it enters, then the two firms simultaneously choose a
Niche of the market to compete.
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Subgame-Perfect with multiple Nash Equilibria

We have two pure Nash equilibria in the post Entry
subgame.

(σE , σI ) =((in, large niche if
in), (small niche if firm E palys
"in")

(σE , σI ) =((out, small niche if
in), (large niche if firm E plays
"in")
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Subgame-Perfect with multiple Nash Equilibria

Example (Multiple SPE)
Multiple SPE may exist even if each payoff is unique.
Rather than working from the very bottom decision node,
we work from the last decision node in the game with a
unique history. We call this a sub-game.

Player B
L R

Pl
ay
er
A U 3, -3 -2, 2
D -1, 1 0, 0

Table: No Pure Nash Strategy
for this sub-game

A1 = {G ,S }
A2 = {U ,D }
A1×A2 = {GU ,GD ,SU ,SD }

Player B
L R

Pl
ay
er
A GU 3, -3 -2, 2

GD -1, 1 0, 0
SU -1/3, 4 -1/3, 4
SD -1/3, 4 -1/3, 4

Table: Four Pure Nash
Strategies for the whole game
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Subgame-Perfect with multiple Nash Equilibria

Multiple SPE may exist even if each payoff is unique.
With that information in hand, we erase the subgame and
replace it with those from expected payoffs (p ∗U = 1

6 ,
q ∗L = 1

3 ).
Because, from −3pU + (1− pU ) = 2pU one can get
p ∗U = 1

6 , and with the same manner,
3qL − 2(1− qL ) = −qL and q ∗L = 1

3 . Then 3
1
3 − 2

2
3 = −13

He earns -1/3 regardless of whether he chooses stay or
go.
He can select either as a pure strategy or play any mixture
between the two, the third case in the following slide.
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Subgame-Perfect with multiple Nash Equilibria

Different types of SPE.
• In the first, player 1 Goes as a pure strategy, giving us an
SPE of ((Go ,p ∗

U = 1
6 ),q

∗
L = 1

3 ).

• In the second, player 1 Stays as a pure strategy,
((Stay ,p ∗

U = 1
6 ),q

∗
L = 1

3 ).

• Finally, ((pG ,p ∗
U = 1

6 ),q
∗
L = 1

3 ) represents the cases where
player 1 mixes between Stay and Go, where pG equals any
number between 0 and 1, not including 0 and 1.
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Criticisms of Subgame Perfection

We motivated Subgame Perfection as an attempt to
eliminate equilibria that involved incredible threats.

As we go on to consider applications, we will use SPE
regularly as a solution concept.

Before we do this, however, it is worth pausing
momentarily to ask whether SPE might be fanatical in
eliminating equilibria.
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Criticisms of Subgame Perfection

Example (The Centipede Game)

In games with many stages, backward induction greatly
stresses the assumption of rationality (and common knowledge
of rationality).

The unique SPE is for Player 1 to start by moving Out

The subgame perfect outcome is unfortunate; many outcomes
have better payoffs for both players than what occurs in
equilibrium.
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Criticisms of Subgame Perfection

Example (Ultimatum Game: a simple version)
Two players have a continuous dollar (or a Cake) to divide.
Player 1 proposes to divide the dollar at x ∈ [0,1], where
he will keep x and player 2 will receive 1− x .
Player 2 can choose to either Accept this division of the
dollar, or Reject it, in which case each player receives 0.
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Criticisms of Subgame Perfection

Example (Ultimatum Game: a simple version)
Any division (p ,1− p ) of the dollar can be sustained as a
Nash equilibrium:

1 : x = p (1)

2 :

{
R if 1− x < 1− p
A if 1− x ≥ 1− p

(2)

Notice that 2’s strategy specifies how he responds to any
offer, not just the one that 1 actually makes in equilibrium.
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Criticisms of Subgame Perfection

Example (Ultimatum Game:)
We might interpret this equilibrium as "2 demands at least
1− p , and 1 offers 2 the minimal amount that 2 will
accept."

In the case of p < 1, however, player 2’s strategy
involves a not believable threat to reject a positive amount
1− p in favor of 0. Not rational behavior.

Remember from the definition of Nash equilibrium that
p = 0 or 1 is a possible Nash equilibrium as well.

1 : x = p (3)
2 : A (4)

However, experimental trials show that (0.5, 0.5)
strategy is a focal point, in terms of fairness
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Criticisms of Subgame Perfection

In practice people do not seem to play the game this way.

The centipede game is frequently subject of laboratory
experiments.

Game theorists have a variety of explanations for the
discrepancy between subgame perfect play and play in
practice.

As with everything else in game theory, backward
induction is only as good as its assumptions.
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Repeated Games
Example
Many interactions in the real world have an ongoing
structure

• Firms compete over prices or capacities repeatedly
In such situations players consider their long-term payoffs
in addition to short-term gains
This might lead them to behave differently from how they
would in one-shot interactions
Consider the following pricing game in the DRAM chip
industry

Player B
High Lowh

Pl
ay
er
A High 2, 2 0, 3

Low 3, 0 1, 1

Table: No Pure Nash Strategy for this subgame

What happens if this game is played only once?
What do you think might happen if played repeatedly?
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Dynamic Rivalry
Example

If a firm cuts its price today to steal business, rivals may
retaliate in the future, nullifying the “benefits” of the
original price cut
In some concentrated industries prices are maintained at
high levels

• U.S. steel industry until late 1960s
• U.S. cigarette industry until early 1990s

In other similarly concentrated industries there is intense
price competition

• Costa Rican cigarette industry in early 1990s
• U.S. airline industry in 1992

When and how can firms sustain collusion?
They could formally collude by discussing and jointly
making their pricing decisions

• Illegal in most countries and subject to severe penalties
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Implicit Collusion

Example

Could firms collude without explicitly fixing prices?
There must be some reward/punishment mechanism to
keep firms in line
Repeated interaction provides the opportunity to
implement such mechanisms
For example Tit-for-Tat Pricing: mimic your rival’s last
period price
A firm that contemplates undercutting its rivals faces a
trade-off

• short-term increase in profits
• long-term decrease in profits if rivals retaliate by lowering
their prices
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Implicit Collusion

Example

Depending upon which of these forces is dominant
collusion could be sustained
What determines the sustainability of implicit collusion?
Repeated games is a model to study these questions
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Repeated Games

Example

Players play a simultaneous move game repeatedly over
time
If there is a final period: finitely repeated game
If there is no definite end period: infinitely repeated game

• players do not know when the game will end but assign
some probability to the event that this period could be the
last one

Today’s payoff of $1 is more valuable than tomorrow’s $1
• This is known as discounting
• Denote the discount factor by δ ∈ (0,1)
• In PV interpretation: if interest rate is r then δ is;

δ =
1
1+ r
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Payoffs, and Repeated Game Strategies

Example

If starting today a player receives an infinite sequence of
payoffs

u0, u1, u2, u3, ...

The payoffs’ present value is

u0 + δu1 + δ2u2 + δ3u3, ...

For a moment assume that ut = us for all t and s . Then
P .V (u ) = u0/(1− δ)
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Backward Induction: Example

Example

Player B
High Low

Pl
ay
er
A High 2, 2 0, 3

Low 3, 0 1, 1

Table: No Pure Nash Strategy for this subgame

Rule of the game: Tit-for-Tat
• Start with High
• Play what your opponent played last period

There are potentially two types of histories
• Histories in which everybody always played High
P .V (u ) = 2/(1− δ)

• Histories in which somebody played Low in some period
P .V (u ) = 3+ 1/(1− δ)
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Payoffs, and Repeated Game Strategies

Example

When does a firm deviate from High to Low?
It depends on the market interest rate.

2/(1− δ) < 3+ 1/(1− δ)

which gives us δ < 2
3 , and in turn r >

1
2 .
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Backward Induction: More
Examples
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Backward Induction: Example
Example

Player I is an internet service provider and player II a
potential customer. They consider entering into a contract
of service provision for a period of time.
The provider decides between two levels of quality of
service: High or Low
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Backward Induction: More Examples

Example

The buyer decides between two actions: to buy or not to
buy
The service provider, player I, makes the first move,
choosing High or Low quality of service. Then the
customer, player II, is informed about that choice.
Player II can then decide separately between buy and
don’t buy in each case.
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Exploring the rationality in backwards-induction

Example

Consider the following three-move game, in which player
1 moves twice:

To find the backwards-induction outcome, we begin at the
player l’ s second move.
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Exploring the rationality in backwards-induction

Example (cont.)

Here player 1 faces a choice between a payoff of 3 from
L ” and a payoff of 0 from R ”, so L ” is optimal.

Thus, at the second stage, player 2 anticipates that if the
game reaches the third stage (the pen-terminal node)
then 1 will play L ”, which would yield a payoff of 0 for
player 2.

The second-stage choice for player 2 therefore is between
a payoff of 1 from L ′ and a payoff of 0 from R ′, so L ′ is
optimal.

At the first stage, player 1 anticipates that if the game
reaches the second stage then 2 will play L ′, which would
yield a payoff of 1 for player 1.
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Exploring the rationality in backwards-induction

The first-stage choice for player 1 therefore is between a
payoff of 2 from L and a payoff of 1 from R, so L is
optimal.

This sequence of arguments establishes that the
backwards-induction outcome of this game is for player 1
to choose L in the first stage.

What would happen if the game did not end in the first
stage?
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Subgame Perfection
Here is a game with 3 subgames.
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