

Dynamic Games: WPBE

GholamReza Keshavarz Haddad

Sharif University of Technology Graduate School of Management and Economics

May 5, 2020

Haddad (GSME)

Microeconomics II 1 / 20

Outline

1 Repeated Games

2 Systems of Beliefs and Sequential Rationality

3 Weak Perfect Bayesian Equilibrium

Haddad (GSME)

Microeconomics II 2 / 20

Repeated Games

Example

- Many interactions in the real world have an ongoing structure
 - Firms compete over prices or capacities repeatedly
- In such situations players consider their long-term payoffs in addition to short-term gains
- This might lead them to behave differently from how they would in one-shot interactions
- Consider the following pricing game in the DRAM chip industry

Table: One Pure Nash Strategy for this sub-game, (Low, Low)

Dynamic Rivalry

- If a firm cuts its price today to steal business, rivals may retaliate in the future, nullifying the benefits of the original price cut
- In some concentrated industries prices are maintained at high levels
 - U.S. steel industry until late 1960s
 - U.S. cigarette industry until early 1990s
- In other similarly concentrated industries there is intense price competition
 - Costa Rican cigarette industry in early 1990s
 - U.S. airline industry in 1992
- When and how can firms sustain collusion?
- They could formally collude by discussing and jointly making their pricing decisions
 - Illegal in most countries and subject to severe penalties

Implicit Collusion

- Could firms collude without explicitly fixing prices?
- There must be some reward/punishment mechanism to keep firms in line
- Repeated interaction provides the opportunity to implement such mechanisms
- For example Tit-for-Tat Pricing: mimic your rivals last period price
- A firm that contemplates undercutting its rivals faces a trade-off
 - short-term increase in profits
 - long-term decrease in profits if rivals retaliate by lowering their prices

Implicit Collusion

- Depending upon which of these forces is dominant collusion could be sustained
- What determines the sustainability of implicit collusion?
- Repeated games is a model to study these questions

Repeated Games

- Players play a simultaneous move game repeatedly over time
- If there is a final period: finitely repeated game
- If there is no definite end period: infinitely repeated game
 - players do not know when the game will end but assign some probability to the event that this period could be the last one
- Todays payoff of \$1 is more valuable than tomorrows \$1
 - This is known as discounting
 - Denote the discount factor by $\delta \in (0, 1)$
 - In PV interpretation: if interest rate is *r* then δ is;

$$\delta = \frac{1}{1+r}$$

Payoffs, and Repeated Game Strategies

Example

 If starting today a player receives an infinite sequence of payoffs

 $u_0, u_1, u_2, u_3, \dots$

The payoffs' present value is

$$u_0 + \delta u_1 + \delta^2 u_2 + \delta^3 u_3, \dots$$

For a moment assume that $u_t = u_s$ for all t and s. Then $P.V(u) = u_0/(1-\delta)$

Backward Induction: Example

Example

Table: No Pure Nash Strategy for this subgame

■ Rule of the game: *Tit-for-Tat*

- Start with High
- Play what your opponent played last period
- There are potentially two types of histories
 - Histories in which everybody always played High $P.V(u) = 2/(1-\delta)$
 - Histories in which somebody played Low in some period $P.V(u) = 3 + 1/(1 \delta)$

Payoffs, and Repeated Game Strategies

Example

- When does a firm deviate from *High* to *Low*?
- It depends on the market interest rate.

$$2/(1-\delta) < 3+1/(1-\delta)$$

which gives us $\delta < \frac{2}{3}$, and in turn $r > \frac{1}{2}$.

Introduction

 So far, we have studied games with Nash (Pure or Mixed) Equilibria, games with Bayesian Perfect Equilibria, and Subgame-Perfect Nash Equilibria.

		Timing		
		Simultaneous	Sequential	
Information	Complete	Nash	Sub-game Perfect Nash Equilibrium	
	Incomplete	Bayesian Nash	Weak Perfect Bayesian Equilibrium	

This part is going to address Weak Perfect Bayesian Equilibrium.

Haddad (GSME)

Microeconomics II 11 / 20

Many games do not have proper sub-game, The SPNE concept may fail to insure sequential rationality.

- The sub-game perfection is powerless in dynamic games where there are no proper sub-games.
- But, still we can find Nash Equilibria in the games of under study

		I	
		Fight if	Acc if
		entry occurs	entry occurs
E	Out	<u>0, 2</u>	<u>0, 2</u>
	ln1	-1, -1	<u>3, 0</u>
	ln2	-1, -1	2, <u>1</u>

- The game has three Nash equilibria
- We need a theory of "reasonable" choices by players at all nodes, and not just at those nodes that are parts of proper sub-games.
- One way to approach this problem in the above example is to ask: Could Fight be optimal for Firm I when it must actually act for any belief that it holds about whether Firm E played *In*₁ or *In*₂? Clearly, no!
- Assume that the Firm I believes that Firm **E** plays Action ln_1 with probability μ and the ln_2 with (1μ) , **the system of beliefs**.
- $\blacksquare \ -1 < 1-\mu \text{ for all } \mu \in [0,1]$

- This motivates a formal development of beliefs in extensive form games.
- To express the notion formally, we need to define two basic components
 - System of beliefs
 - 2 Sequential rationality of strategies

Definition

A system of beliefs is a mapping $\mu : \chi \to [0, 1]$ such that, for all $x \in H$, $\sum_{x \in H} \mu(x) = 1$.

 In words, a system of beliefs, μ, specifies the relative probabilities of being at each node of an information set, for every information set in the game.

- Let $E[u_i|H, \mu, \sigma_i, \sigma_{-i}]$ denote player *i*'s expected utility starting at her information set *H* if her beliefs regarding the relative probabilities of being at any node, $x \in H$ is given by $\mu(x)$, and she follows strategy σ_i while the others play the profile of strategies σ_{-i} .
 - $H = \{In_1, In_2\}$
 - $\sigma_1 = (Acc \text{ if entry occurs})$ and $\tilde{\sigma}_1 = (Fight \text{ if entry occurs})$

•
$$I = \iota(H)$$

•
$$E = -\iota(H)$$

Definition (sequentially rational at an Info set)

A strategy profile, σ , is sequentially rational at information set H, given a system of beliefs μ , if

$$E[u_{\iota(H)}|H,\mu,\sigma_{\iota(H)},\sigma_{-\iota(H)}] \ge E[u_{\iota(H)}|H,\mu,\tilde{\sigma}_{\iota(H)},\sigma_{-\iota(H)}]$$

for all $\tilde{\sigma}_{\iota(H)} \in \Delta(\mathcal{S}_{\iota(H)})$

• A strategy profile $\sigma = (\sigma_1, ..., \sigma_l)$ is sequentially rational if no player finds it worthwhile to revise her strategy, given a system of beliefs and her rivals' strategies.

- With these two notions, we are ready to formally define the **WPBE** which involves in two conditions:
 - Strategies must be sequentially rational given beliefs

 - Whenever possible, beliefs must be consistent with the strategies.
- In an equilibrium, players should have correct beliefs about their opponents' choices

Systems of Beliefs...: More about consistency of beliefs

Example (consistency of beliefs)

- Consider a special case in which each player in her information set mixes among her actions, by $p(out) \ge 0$, $p(ln_1) \ge 0$, $p(ln_2) \ge 0$ and $p(out) + p(ln_1) + p(ln_2) = 1$.
- Then consistency of beliefs in $H = \{In_1, In_2\}$ requires that $\mu(In_1) = \frac{\rho(In_1)}{\rho(In_1) + \rho(In_2)}$.
- In which $p(In_1) + p(In_2)$ is the probability of reaching to H, and $p(In_1)$ is probability of reaching to the node following action In_1 .

Weak Perfect Bayesian Equilibrium

Definition (WPBE)

A profile of strategies, σ , and a system of beliefs, μ , is a Weak Perfect Bayesian Equilibrium **WPBE**, (σ, μ) , if:

 ${\color{black}\textbf{0}}$ σ is sequentially rational given μ

② μ is derived from σ through Bayes rule whenever possible. That is, for any information set *H* such that *P*(*H*| σ) > 0, and any *x* ∈ *H*,

 $\mu(x) = P(x|\sigma)/P(H|\sigma)$

Weak Perfect Bayesian Equilibrium

Example (Entery game, Cont.)

- Firm I must play *Acc* in Firm *E* enters in any WPBE, because, -1 < (1 µ).</p>
- If Firm I chooses to play "Acc", then best response of E is "Enter".
- Because 3 > 0 and 2 > 0
- What about the (*In*₁, *"Acc" if entry occurs*)? This strategy profile is a part of a **WPBE**.
- The I's beliefs must assign Probability 1 to being at the left node of its information set.
- This strategies are sequentially rational given this system of beliefs and unique WPBE.