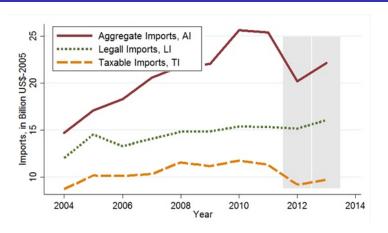
Welfare Costs of Raising Tariffs

Kowsar Yousefi¹ Hanifa Pilvar²

¹Assistant Professor of Economics Institute for Management and Planning Studies

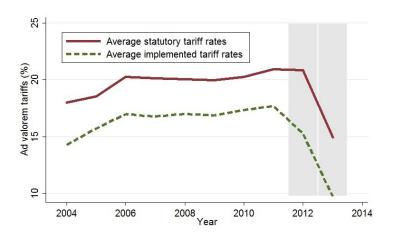
> ²MA Graduate of Economics Sharif University


> > Sharif University Aban 1396

Outline

- Motivations
- 2 literature
- Theoretical Model
- 4 Empirical model
- Data
- 6 Results
- Welfare implications
- 8 Future studies

Stylized fact 1:


World exports, custom imports, and tariff paid imports

- Al=selective partners' exports to Iran
- LI= custom imports from the same partners
- TI= share of custom with fully paid tariffs

Stylized fact 2:

Statutory vs. actual tariffs

• Not all the custom imports pay statutory tariffs

Concepts used in this study

- Discrepancy between world's export to Iran and Iran's import
 - measurement errors (Feenstra and Hanson, 2000)
 - illegal imports (Fisman and Wei, 2004)
 if, corr(discrepancy, tariffs) ≠ 0
- Discrepancy between statutory and actual tariffs (Pritchett and Sethi, 1995)
 - mid-year tariff changes
 - exemptions
 if, corr(discrepancy, tariffs) ≠ 0
- In other words, importers have 3 options: legal imports with paying tariffs, exempt imports, illegal imports

Question

- Based on the literature (Ossa 2014) increasing tariffs affects welfare through at least three mechanisms:
 - terms of trade
 - producers surplus
 - government income
- What we add in this study:
 - resource costs to seek for exemptions
 - resource and penalty costs to do illegal import

Question of this study

How large is the welfare loss, when tax noncompliance exists?

How the literature addresses welfare costs with non-compliance

- In the tax literature, we have *Sufficient statistics* which says: welfare loss of tax $\equiv \tau \frac{dTl}{d\tau}$
- However, when tax noncompliance induces externality, sufficient statistics is not sufficient anymore (Chetty, AEJ 2009)
- This study: quantifies welfare cost of raising tariffs, given the huge noncompliance observed in the Iran's data

More literature review

- Taxation and Development
 - Besley and Persson (2009, 2013)

word of the day...

Bird (2004) the best tax policy in the world is worth little if it cannot be implemented effectively

- Trade Tax Noncompliance
 - Evasion: Fisman and Wei (2004)
 - Avoidance: Pritchett and Sethi (1994)

literature (continue)

- Welfare Implication of Raising Tax Rates
 - Tax Literature:
 - Review: Saez, Slemrod and Giertz (2009)
 - Theoretically recalculation of sufficient statistics,: Chetty (2009a)
 - Trade Literature:
 - Welfare impact of moving from autarky to trade: i.e., Caliendo & Parro, 2014; Ossa, 2014; Costinot & Rodriguez, 2012
 - Welfare impact of raising tariffs: blank
 - With noncompliance: blank

Model

- There are two goods: domestic and foreign
- Domestic good is numeraire
- HH works in the only home's productive firm
- HH earns labor income + dividends
- Domestic market is competitive and small compared to world
- Tariff rate is τ
- Noncompliance could be in two forms:
 - evasion (e)
 encounters transfer cost (z) + resource cost (g)
 - avoidance (a)
 encounters resource costs (g)

Theory (continue)

HH problem:

$$\max_{s.t.} u(c_d, c_f, a, e) = c_d + \ln(c_f) - g(a, e)$$

s.t. $c_d + X + (1 + \tau)(pc_f - a - e) = wl + d - a - e - z(e, \tau)$ (1)

where,

X is export

 c_d is domestic good

cf is foreign good

a is the tax avoided import (avoidance)

e is the tax evaded import (evasion)

z is transfer cost (a function of e and τ)

g is resource cost

• At equilibrium: $pc_F = X$, $X + c_d = Y$

Theory (continue)

 At equilibrium, total welfare is obtained from HHs' utility plus government income:

$$W(\tau) = \{-X + wl + d - a - e - z(e, \tau) - (1 + \tau)(pc_f - a - e) + ln(c_f) - g(a, e)\} + \tau(pc_f - a - e) + z(e, \tau)$$
(2)

• After some algebra (including use of envelope theorem) we'll have:

$$\frac{dW}{d\tau} = \tau \left[(1 - \mu) \frac{\partial AI}{\partial \tau} - (1 - \mu) \frac{\partial LI}{\partial \tau} + \frac{\partial TI}{\partial \tau} \right]$$
 (3)

where,

$$AI = pc_f$$
, aggregate imports

$$LI = pc_f - e$$
, legal imports

$$TI = pc_f - a - e$$
, taxable imports

$$\mu = \frac{\frac{\partial g}{\partial e}}{\frac{\partial g}{\partial e} + \frac{\partial z}{\partial e}}$$

Empirical model

- Our empirical methodology consists of the following two steps:
- 1 estimate elasticities $\hat{\varepsilon}_{AI}$, $\hat{\varepsilon}_{LI}$, $\hat{\varepsilon}_{TI}$:

$$logXI_{g,i,t} = \alpha_{XI}log\tau_{i,t} + \alpha_{2}VAT_{t} + \alpha_{4}X_{g,i,0} + year \ dummies_{t} + \varepsilon_{g,i,t}$$
 where, $XI \in \{AI, LI, TI\}$

2 calculate $\frac{d\hat{W}}{d\tau}(\mu), \ \forall \mu \in [0,1]$ from the following formula:

$$\frac{d\hat{W}}{d\tau} = [(1-\mu)\hat{\varepsilon}_{AI}AI - (1-\mu)\hat{\varepsilon}_{LI}LI + \hat{\varepsilon}_{TI}TI] \tag{4}$$

Data sources

- UNCOMTRADE
 - Country specific exports to Iran (23 countries selected), in 6 digits HS
- Iran's Custom Administration
 - Iran's import value and custom income, in 8 digits HS-country
- Exports and Imports Regulation Book
 - Statutory tariffs, in 8 digits HS
- Final dataset (after cleaning and merging)
 - In 6 digits of HS code-country-year
 - Al=Custom reported imports+ illegal imports
 - LI= Custom reported imports
 - TI= Custom reported imported which paid statutory tariffs
 - Excluded the followings:
 - Cases with implemented tariff>1.05*statutory tariffs (7% of original data)
 - Country-years without exporter reporting to WITS.

Data statistics

Table: Statistics

	Mean	SD	Min	Max
Statutory tariff rate (%)	19.86	19.08	4	150
Value Added Tax (%)	-	-	0	5
Priorities	-	-	1	10
Nominal values in 2010-Million Dollars:				
Government custom revenue	0.14	1.12	0	109
Aggregate imports(AI)	1.78	11.38	0	729
Legal import (LI)	1.28	7.77	0	424
Taxable import (TI)	0.96	6.15	0	424
Government oil income $\times 10^3$	25.8	12.17	15.91	51.84
Observations	94,491			

Results

Table: Elasticity of government custom income to statutory tariffs (au_{stat})

	all observations	exclude if $ au > top \; 1\%$
Log(Statutory tariff rates)	0.288*** -6.96	0.335*** -7.78
Partner-HS code fixed effect N	yes 92,980	yes 92,060

- Dependant var.: $log(government\ custom\ income)$
- Other control variabes: VAT, government oil income, 10 dummies for Al splines in 2004, constant, year dummies, black market premiums
- Robust, fixed effects (per 8dgts HS-exporter) controlled

Results(continue)

Table: Elasticity of τ_{actual} w.r.t. τ_{stat}

	all observations	exclude if $ au > top \; 1\%$
Log(Statutory tariff rates)	0.571*** -31.37	0.571*** -30.66
Partner-HS code fixed effect N	yes 92,980	yes 92,060

- dependant var.: $log(\tau_{actual})$
- Other control variabes: VAT, government oil income, 10 dummies for Al splines in 2004, constant, year dummies, black market premiums
- Robust, fixed effects (per 8dgts HS-exporter) controlled

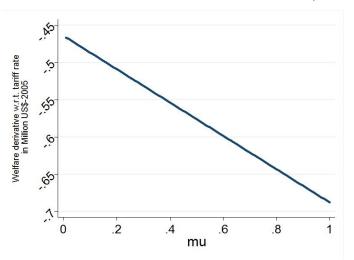
Results(continue)

Table: Elasticity of log(illegal imports) w.r.t. τ_{stat}

	all observations	exclude if $ au > top \; 1\%$
Log(Statutory tariff rates)	0.225*** (5.87)	0.188*** (4.72)
Partner-HS code fixed effect N	yes 94,491	yes 92,060

- dependant var.:
 illegal imports≡ log(export_{partenrs}) log(import_{Iran})
- Other control variabes: VAT, government oil income, 10 dummies for Al splines in 2004, constant, year dummies, black market premiums
- Robust, fixed effects (per 8dgts HS-exporter) controlled

Welfare implications


Remind that, calculating welfare implications requires the following two steps:

- 1- estimate elasticities $\hat{\varepsilon}_{AI}$, $\hat{\varepsilon}_{LI}$, $\hat{\varepsilon}_{TI}$:
- 2- calculate $\frac{d\hat{W}}{d\tau}$: $\frac{d\hat{W}}{d\tau} = [(1-\mu)\hat{\varepsilon}_{AI}AI (1-\mu)\hat{\varepsilon}_{LI}LI + \hat{\varepsilon}_{TI}TI]$

Table: Step-1: Estimation of $\hat{\varepsilon}_{AI}$, $\hat{\varepsilon}_{LI}$, $\hat{\varepsilon}_{TI}$

	log(AI)	log(LI)	log(TI)
Log(Statutory tariff rate)	-0.0294** (-2.19)	-0.215*** (-5.34)	-0.668*** (-15.51)
Partner-HS code fixed effect N	Yes 92,060	Yes 92,060	Yes 92,060
Behavioral effect	Yes	Yes	Yes
Evasion effect	No	Yes	Yes
Avoidance effect	No	No	Yes

Figure: Step 2: Calculate Δ Welfare w.r.t. $\Delta \tau_{statutory}$

• Δ Welfare is calculated for $\forall \mu \in [0,1]$

Conclusion-1

Welfare Implications

As a results of 1 unit tariff increase, welfare reduces by about $$450^k$ to $$650^k$, for an average importing basket of $$1,780^k$.

Conclusion-2

• $G = \tau_{imp} \times LI$ implies that:

Government Income

$$\underline{\Delta\% custom\ income}_{\hat{\varepsilon}_{GovInc}=0.28} \approx \underline{\Delta\% implemented\ tariffs}_{\hat{\varepsilon}_{\tau,imp}=0.57} + \underline{\Delta\% legal\ imports}_{\hat{\varepsilon}_{LI}=-0.25}$$

- The slop of Laffer curve is positive
- However, only 1/3rd of change in τ_s ends up in custom income
- The rest is neutralized by decrease in aggregate imports due to behavioral impact (3 %), increase in evasion (19 %) and discrepancy between actual and statutory tariffs (43 %).

Open Questions to be Left for Future Studies

- Extending the model for large economies
 - where, impact of tariffs on terms of tariffs matters
- Relaxing the assumption of home's perfect competition
 - where, tariff protection matters
- Exploring sources of discrepancy between implemented and statutory tariffs
- Financing of this huge amount of illegal imports

Thank you

Total imports

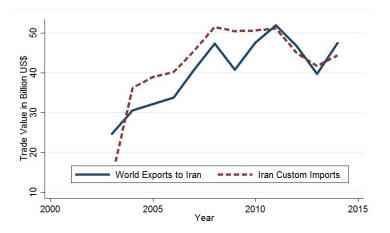


Figure: Import values are obtained from Iran's custom; world's exports is from UNCOMTRADE; values in real \$2005.