

Sharif University of Technology

Financial Contagion by Allen and Gale JPE, 2000

Discussed by Mahdi Shahrabi October 30, 2017

Outline

- 1. Motivation
- 2.Interbank markets
- 3.Fragility
- 4. Conclusion

1. Motivation

- Financial crisis are prevalent
- Financial crises are important because they raise the costsof intermediation and restrict credit
- Small shocks spread to the rest of the financial sector
- U.S. subprime mortgage market \rightarrow effect all over the world

- t = 0, 1, 2
- Continuum of agents, identical at t = 0
- Deposit one unit of consumption at t = 0 in exchange of (c_1, c_2)
- Agents may store between t = 1 and t = 2 at no cost
- Privately observed idiosyncratic preference shock at t = 1,

$$U(c_{1}, c_{2}) = \begin{cases} u(c_{1}), & \omega \\ u(c_{2}), & 1 - \omega \end{cases}$$

- Intermediary has access to two assets
 - Short-term: return of 1
 - Long-term: return of R > 1 at t = 2 or r < 1 at t = 1

- 2. Interbank Markets
 - Multiple equilibria: even identical intermediaries can encounter different demands for liquidity

Allen & Gale (2000)

- Similar set-up
- Contagion: overlapping claims banks have on one another
- Complete information
- Focus on the Pareto-efficient equilibrium (no sunspots)

- Intermediaries are identical at t = 0
- At t = 1, privately observe proportion of early dyers, $\omega_H > \omega_L$

TABLE 1

REGIONAL LIQUIDITY SHOCKS

	А	В	С	D
$S_1 \\ S_2$	$\omega_H \ \omega_L$	$\omega_L \ \omega_H$	$\omega_H \ \omega_L$	$\omega_L \\ \omega_H$

Let
$$\gamma = \frac{\omega_H + \omega_L}{2}$$

• Social planner

$$\max_{c_{1},c_{2},x,y} \gamma u(c_{1}) + (1-\gamma) u(c_{2})$$

s.t. $x+y \le 1$, $\gamma c_1 \le y$, $(1-\gamma)C_2 \le Rx$

FIG. 1.—Complete market structure

- Each bank holds $z^i = \frac{(\omega_H \gamma)}{2}$ deposits in each region $j \neq i$
- At t = 1, high demand for liquidity banks

$$\left(\omega_H + \frac{\omega_H - \gamma}{2}\right)c_1 = y + \frac{3(\omega_H - \gamma)}{2} \Leftrightarrow \gamma c_1 = y$$

• At t = 1, low demand for liquidity banks

$$(\omega_L + \omega_H - \gamma)c_1 = y \Leftrightarrow \gamma c_1 = y$$

• At t = 2, banks that had high demand for liquidity

$$[(1 - \omega_H) + (\omega_H - \gamma)]c_2 = Rx \Leftrightarrow (1 - \gamma)c_2 = Rx$$

• At t = 2, banks that had low demand for liquidity

$$\left[(1-\omega_L) + \frac{\omega_H - \gamma}{2} \right] c_2 = Rx + \frac{3(\omega_H - \gamma)}{2} \Leftrightarrow (1-\gamma)c_2 = Rx$$

• All constraints are satisfied \Rightarrow First best is achieved

FIG. 2.—Incomplete market structure

- Each bank holds $z^i = \omega_H \gamma$ deposits in region i + 1
- Constraints of the social planner problem are satisfied
- First best achieved

Question:

How susceptible are different network structures to liquidity shocks?

FIG. 3.—Disconnected incomplete market structure

3. Fragility

TABLE 2

REGIONAL LIQUIDITY SHOCKS WITH PERTURBATION

	А	В	С	D
S_1	ω_H	ω_L	ω_H	ω_L
S_2	ω_L	ω_H	ω_L	ω_H
\overline{S}	$\gamma + \epsilon$	γ	γ	γ

- \bar{S} occurs with zero probability
- Does not change optimal allocation at t = 0

Continuation equilibrium at t = 1

- Consumers decide when to withdraw
 - o Early consumers always withdraw at t = 1
 o Late consumers withdraw at t = 2 iff c₂ ≥ c₁
- Banks pay c₁ to whoever demands liquidity at t = 1
 Solvency, Insolvency, Bankruptcy
- Pecking order: short assets, deposits, long assets

Continuation equilibrium at t = 1, state \overline{S}

• $q^A < c_1 \Rightarrow$ all will withdraw from bank A

•
$$q^A \leq \frac{y + rx + zc_1}{1 + z} \equiv \bar{q}^A$$

- In state \overline{S} , A is insolvent
- Avoid run $\Leftrightarrow c_2 \ge c_1 \Leftrightarrow$ keep at least $\frac{(1-\omega)c_1}{R}$ of the long asset

• Buffer
$$b(\omega) = r \left[x - \frac{(1-\omega)c_1}{R} \right]$$

• Bank A avoids a run iff

$$\epsilon c_1 \leq b(\gamma + \epsilon)$$

• Interbank deposits are liquidated

• Cancel out if $q^A = c_1$

• If $q^A < c_1$, *D* gets insolvent

- D goes bankrupt \Rightarrow all banks go bankrupt
- Lower bound for spill over effect

 $z(c_1-\bar{q}^A)$

Proposition 2

- Under the equilibrium allocation at t = 0
- $\bar{S} \Rightarrow A$ is insolvent
- A bankrupt $\Leftrightarrow \epsilon c_1 < b(\gamma + \epsilon)$
- $z(c_1 \bar{q}^A) > b(\gamma) \Rightarrow D$ goes bankrupt \Rightarrow all go bankrupt

- We can find parameters such that
 - o Incomplete market: all banks go bankrupt
 - o Complete market: no bankruptcy

Complete Market

• Each bank hold $\frac{z}{2} = \frac{\omega_H - \gamma}{2}$ deposit in each other bank

If \bar{S} occurs, under conditions of proposition two

- A goes bankrupt
- Assuming no other region is bankrupt

$$\bar{q}^{A^*} = \frac{y + rx + \frac{3z}{2}c_1}{1 + \frac{3z}{2}}$$

- Loss of other banks is $\frac{z}{2}(c_1 \overline{q}^{A^*})$
- Banks go insolvent
- Do not go bankrupt $\Leftrightarrow \frac{z}{2}(c_1 \bar{q}^{A^*}) \le b(\gamma)$

In Figure 3, if \bar{S} occurs

- A goes bankrupt, B is insolvent (or bankrupt)
- o C and D are not affected

4. Conclusion

- Links expose the system to contagion
- Incomplete networks are more prone to contagion than
 complete structures
- Better connected networks: proportion of the losses in one bank's portfolio is transferred to more banks
- Incomplete network: failure of a bank may trigger the failure of the entire banking system