The Finance Uncertainty Multiplier

Alfaro, Bloom, Lin Working Paper December 2017

> Presenter Mehdi Ghodsizadeh

Introduction

- Why are uncertainty shocks in some period (like 2008 crisis) drops in output, while in other periods (Brexit and Trump election) are accompanied by steady economic growth?
- Uncertainty shocks and Financial shocks are highly correlated. Are these the same shock? Do financial friction amplify impact of uncertainty shock?

Introduction

Key Results

- 1. Finance uncertainty multiplier Roughly doubles negative impact of Uncertainty
- 2. Uncertainty shocks and financial shocks are additive

Table 1 Key results in simulation

	Uncertainty	Uncertainty
	shock	+ financial shocks
Real frictions	1.3%	n/a
Real+financial frictions	2.4%	4.0%

Introduction

Key Results

Figure 1: Uncertainty, real outcomes and financial flows

Model

Technology

Model Technology

Productivity->AR(1)
 Stochastic volatility process

$$z_{t+1} = \rho_z z_t + \sigma_t \varepsilon_{t+1}^z$$
 $\sigma_t \in \{\sigma_L, \sigma_H\}$, where $\Pr(\sigma_{t+1} = \sigma_j | \sigma_t = \sigma_k) = \pi_{k,z}^\sigma$

Capital AccumulationNonconvex adjustment
cost
$$K_{t+1} = (1 - \delta)K_t + I_t,$$
 $G_t = c_k S_t \mathbf{1}_{\{I_t \neq 0\}},$

Operating Profit

$$\Pi_t = S_t - \bar{W}L_t - F.$$

Model

Cash holding and External Financing cost

Financing Cost

$$\Psi_t = \phi\left(\eta_t, \sigma_t\right) S_t \mathbf{1}_{\{E_t < 0\}}.$$

Model

Firm's Problem

$$V_{t} = \max_{I_{t}, L_{t}, K_{t+1}, N_{t+1}} \left[E_{t} - \Psi_{t} + \beta \mathbb{E}_{t} V_{t+1} \right],$$

Calibration

Table 3Parameter values under benchmark calibration

Description	Notation	Value	Justification
Technology			
Subjective discount factor	eta	0.988	Long-run average of U.S. firm-level discount rate
Return on saving	r_n	0.01	80% of the risk-free rate (the cash to asset ratio for cash holding firms)
Share on capital	α	0.33	Capital share in output is one-third, labor share is two-thirds
Markup	${\mathcal E}$	4	33% markup. With constant returns to scale yields $a + b = 075$
Wage	\bar{w}	1	Wage rate normalized to 1
Rate of depreciation for capital	δ	0.03	Capital depreciation rate assumed 3% per month
Fixed cost of investment	c_k	0.01	1% of quarterly output (We also show robustness with $2%$, $4%$)
Fixed operating cost	F	0.2	Firms' average SG&A to sales ratio
Uncertainty shock (2 state Markov)			
Conditional volatility of productivity	σ_L	0.051	Baseline uncertainty (Bloom et al 2016)
Conditional volatility in high uncertainty state	σ_H	0.209	Uncertainty shocks 4.1*baseline uncertainty (Bloom et al 2016)
Transition probability low to high uncertainty	$\pi^{\sigma}_{L,H}$	2.60%	Uncertainty shocks expected every 9.6 years (Bloom et al 2016)
Transition probability remaining in high uncertainty	$\pi^{\sigma}_{H,H}$	94%	Quarterly probability of remaining in high uncertainty (Bloom et al 2016)
Persistence of logged idiosyncratic productivity	$ ho_z$	0.95	Quarterly persistence of idiosyncratic productivity (Khan & Thomas 2008)
Stochastic financing cost (2 state Markov)			
Low external financing cost state	η_L	0.005	Low financing cost .5% of output (Altinkilic and Hansen 2000)
High external financing cost state	η_H	0.05	High financing cost 5% of output (Altinkilic & Hansen 2000). Also tried 0.025 & 0.1
Transition probability low to high financing cost state	$\pi^{\eta}_{L,H}$	2.60%	Same as uncertainty shock (Also tried 5%)
Transition prob. remaining in high financing cost state	$\pi^{\eta}_{H,H}$	94%	Same as uncertainty shock (Also tried 50%)
Impact of uncertainty on financial cost	λ	0.03	Correlation between the Baa-Aaa spread and VIX

Policy Functions

Benchmark Result

Table 4

Coefficient on changes in volatility for real and financial variables.

	Real		Financial		
	I/K	dEmp	dCash	dDiv	
A: Data					
Δ Volatility	-0.080	-0.068	0.197	-0.522	
B: Real frictions					
Δ Volatility	-0.042	-0.014	0.000	-0.031	
C: Financial frictions					
Δ Volatility	-0.021	-0.004	1.071	-0.700	
D: Real+financial frictions					
Δ Volatility	-0.077	-0.027	0.316	-0.372	
E: No frictions					
Δ Volatility	0.003	0.006	0.000	-7.230	

Impulse responses

Data

- Stock return from CRSP
- Accounting variable from compustat(Annual Frequency)
- Firm level uncertainty:
 - Realized annual uncertainty
 - Option-implied uncertainty from OptionMetrics

Identification Strategy

- Using Instrument to estimate effect firm's uncertainty on it's activities
- Instrument: Different exposure of aggregate uncertainty shocks(Policy, currency, oil price, treasuries)
 - Estimate sensitivity of each firm(industry) to aggregate shocks.
 - Construct weighted uncertainty from 10 component

Instrument Construction

Estimation of Sensitivities $r_{i,t}^{risk_adj} = \alpha_j + \sum_c \beta_j^c \cdot r_t^c + \epsilon_{i,t}$

Risk adjusted computation

 $r_{i,t}^{excess} = \alpha_i + \beta_{i,mkt} \cdot MKT_t + \beta_{i,HML} \cdot HML_t + \beta_{i,SMB} \cdot SMB_t + \beta_{i,UMD} \cdot UMD_t + \varepsilon_{i,t}$

Construction of Instrument

$$\begin{split} |\beta_j^{c,weighted}|.\Delta\sigma_t^c \\ \beta_j^{c,weighted} = w_c^j\beta_j^c \qquad \& \qquad w_j^c = \frac{abs(t_j^c)}{\sum_c(t_j^c)} \end{split}$$

Empirical Finding

- Investment Result
- Intangible Capital Employment and sales
- Financial Variable
- The Finance Uncertainty multiplier

Investment Result

Table 5 Investment rate								
	(1)	(2)	(3)	(4)	(5)	(6)		
Investment $rate_{i,t}$	OLS	IV	IV	OLS	IV	IV		
	Realized	Realized	Realized	Implied	Implied	Implied		
Δ Volatility _{i,t-1}	-0.031***	-0.080***	-0.028***	-0.089***	-0.215***	-0.079**		
	(-19.896)	(-3.881)	(-2.754)	(-10.520)	(-4.220)	(-2.584)		
Book Leverage _{$i,t-1$}			-0.050***			-0.037***		
			(-8.444)			(-5.739)		
Stock $\operatorname{Return}_{i,t-1}$			0.008***			0.005^{*}		
			(2.957)			(1.747)		
$\text{Log Sales}_{i,t-1}$			-0.021***			-0.020***		
			(-6.673)			(-5.013)		
Return on $Assets_{i,t-1}$			0.129***			0.120***		
			(5.188)			(3.710)		
Tangibility _{$i,t-1$}			-0.114***			-0.120***		
			(-5.953)			(-3.366)		
Tobin's $Q_{i,t-1}$			0.050***			0.054^{***}		
			(10.013)			(8.330)		
1st moment $10IV_{i,t-1}$	No	No	Yes	No	No	Yes		
Firm, time FE	Yes	Yes	Yes	Yes	Yes	Yes		
SE cluster(3SIC)	Yes	Yes	Yes	Yes	Yes	Yes		
Observations	127,361	28,650	28,326	26,237	17,683	17,487		
F 1st st. Cragg-D		166.8	179.2		78.79	60.41		
F 1st st. KleibP		19.33	18.02		13.20	11.49		
p-val Sargan–H J		0.246	0.873		0.680	0.988		

Intangible Capital Employment and sales

	А	Ta dditional l	ble 7 Real Quan	tities		
	(1)	(2) (3) ((4)	(5)	(6)	
	OLS	IV	IV	OLS	IV	IV
	Realized	Realized	Realized	Implied	Implied	Implied
A: Δ Intangible (Capital Inv	$\mathbf{vestment}_{i,t}$				
Δ Volatility _{i,t-1}	-0.054***	-0.097***	-0.036**	-0.138***	-0.187***	-0.056
	(-10.848)	(-4.134)	(-2.208)	(-9.347)	(-2.869)	(-1.066)
Observations	66,865	17,168	17,013	16,290	10,982	10,887
F 1st st. Cragg-D		109.6	111.9		41.06	38.04
F 1st st. KleibP		15.10	16.33		8.325	10.30
p-val Sargan–H J		0.329	0.416		0.241	0.302
B: Δ Employmen	$\mathbf{t}_{i,t}$					
Δ Volatility _{i,t-1}	-0.037***	-0.068***	-0.007	-0.115***	-0.241***	-0.045
	(-11.867)	(-2.657)	(-0.248)	(-10.677)	(-3.429)	(-0.550)
Observations	124,768	$28,\!495$	$28,\!158$	26,132	$17,\!591$	$17,\!396$
F 1st st. Cragg-D		165.9	178.1		79.12	60.25
F 1st st. KleibP		18.92	17.59		13.36	11.66
p-val Sargan–H J		0.177	0.586		0.231	0.440
C: $\Delta Cost$ of God	ods $\mathbf{Sold}_{i,t}$					
Δ Volatility _{i,t-1}	-0.056***	-0.251**	-0.137***	-0.209***	-0.807**	-0.337***
	(-10.376)	(-2.241)	(-3.642)	(-5.642)	(-2.436)	(-3.086)
Observations	128,974	28,720	$28,\!376$	26,384	17,710	$17,\!507$
F 1st st. Cragg-D		167.6	179.8		78.98	60.42
F 1st st. KleibP		19.24	17.94		13.18	11.50
p-val Sargan–H J		0.170	0.029		0.181	0.023

Financial Variable

Table 8									
Financial Outcomes									
	(1)	(2)	(3)	(4)	(5)	(6)			
	OLS	IV	IV	OLS	IV	IV			
	Realized	Realized	Realized	Implied	Implied	Implied			
A: Δ Total Debt _i ,	t								
Δ Volatility _{i,t-1}	-0.078***	-0.256***	-0.160**	-0.198***	-0.811***	-0.678***			
	(-9.702)	(-3.400)	(-2.382)	(-6.744)	(-5.407)	(-4.217)			
Observations	127,911	$28,\!545$	28,320	$26,\!198$	$17,\!586$	17,470			
F 1st st. Cragg-D		166.3	179.5		77.67	60.15			
F 1st st. KleibP		19.10	17.85		13.14	11.52			
p-val Sargan–H J		0.0967	0.334		0.761	0.856			
B: Δ Payout _{<i>i</i>,<i>t</i>}									
Δ Volatility _{i,t-1}	-0.158***	-0.522***	-0.297***	-0.521***	-1.394***	-0.803**			
	(-13.318)	(-4.772)	(-2.710)	(-8.548)	(-4.743)	(-2.590)			
Observations	129,158	28,738	28,389	26,402	17,715	$17,\!512$			
F 1st st. Cragg-D		167.6	180		78.97	60.41			
F 1st st. KleibP		19.24	17.93		13.17	11.48			
p-val Sargan–H J		0.370	0.687		0.988	0.996			
C: Δ Cash holdin	$\mathbf{g}_{i,t}$								
Δ Volatility _{i,t-1}	0.032***	0.197***	0.148**	0.115***	0.639***	0.516**			
	(3.714)	(2.984)	(2.253)	(3.573)	(3.850)	(2.435)			
Observations	$128,\!985$	28,721	28,374	$26,\!381$	17,709	17,506			
F 1st st. Cragg-D		167.6	179.8		78.92	60.38			
F 1st st. KleibP		19.25	17.93		13.17	11.50			
p-val Sargan–H J		0.664	0.559		0.441	0.511			

The Finance Uncertainty Multiplier

• Attempt to tease out **FUM** by running double and triple interaction of uncertainty from financial frictions.

$$\begin{split} I_{i,t}/K_{i,t-1} &= \beta_0 + \beta_1 \Delta \sigma_{i,t-1} + \beta_2 D_{crisis_year,t} \\ &+ \beta_3 D_{crisis_year,t} \cdot \Delta \sigma_{i,t-1} + \beta_4 D_{fin.constrained,i,t-1} + \beta_5 D_{fin.constrained,i,t-1} \cdot \Delta \sigma_{i,t-1} \\ &+ \beta_6 D_{crisis_year,t} \cdot D_{fin.constrained,i,t-1} + \beta_7 D_{crisis_year,t} \cdot D_{fin.constrained,i,t-1} \cdot \Delta \sigma_{i,t-1} \end{split}$$

The Finance Uncertainty Multiplier

Crisis period: Jan-01-2008 to Dec-31-2009 2SLS with full set of controls (1-8)								
Investment Rate_t	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Financial Constraint Measure			S&P Ratings	Whited-Wu	Employees	Assets	Age	Size&Ag
Δ Volatility _{<i>i</i>,<i>t</i>-1} (Realized)	-0.028***	-0.012	-0.010	-0.025**	-0.026**	-0.022**	-0.021**	-0.017†
$D_{crisis,t}$		-	-	-	-	-	-	-
$D_{crisis,t} \cdot \Delta \text{Volatility}_{i,t-1}$		-0.087***	-0.070***	-0.063***	-0.068***	-0.102***	-0.059**	-0.092**
$D_{fin_constrained,i,t-1}$			-0.006*	0.006	0.005	0.002	-	-0.026
$D_{fin_constrained,i,t-1} \cdot \Delta \text{Volatility}_{i,t-1}$			-0.007	0.020^{+}	0.019	0.017	0.006	0.016
$D_{crisis,t} \cdot D_{fin_constrained,i,t-1}$			0.003	-0.012*	-0.012*	-0.018***	-0.000	-0.013**
$D_{crisis,t} \cdot D_{fin_constrained,i,t-1} \cdot \Delta \text{Volatility}_{i,t-1}$			-0.028	-0.047**	-0.053**	-0.039*	-0.021	-0.042*
Observations	28,326	28,326	28,326	21,345	21,203	21,315	22,380	21,353
F-test 1st stage Cragg-D	179.2	80.92	39.33	26.97	33.28	22.34	33.34	25.18
F-test 1st stage KleibP.	18.02	8.550	5.495	4.249	4.793	5.224	4.745	5.810
p-val Sargan–Hansen J	0.873	0.652	0.587	0.530	0.728	0.805	0.944	0.671

Conclusion

- Using a dynamic model with Financial and real friction and shocks delivers three insight:
 - 1. Real and financial frictions doubles impact of uncertainty
 - 2. Combining shock with a financial shock increases the impact of uncertainty
 - 3. Uncertainty not only reduce investment and hiring but also raise firms cash holding.

One More Thing

@iranepubot