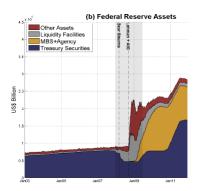
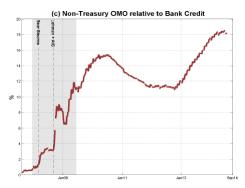
Banks, Liquidity Management, and Monetary Policy

Javier Bianchi Saki Bigio

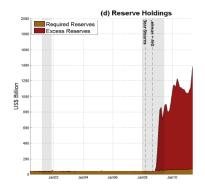
October 4, 2017

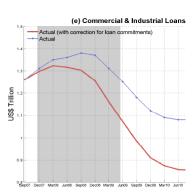
Motivation





Motivation





Motivation

 In response to these unprecedented policy interventions, banks seem to have accumulated central bank reserves without renewing their lending activities as intended. Why?

• Can central banks do more to stimulate lending?

Outline

Introduction

2 The Model

The Mechanism

 The main building block of our model is a liquidity management problem

Bank's liquidity risk

 Trade-off between profiting from lending and incurring additional liquidity risks

Model Features

 We introduce this liquidity management problem into a dynamic stochastic general equilibrium model with rational, profit-maximizing banks

• We are able to reduce the state space into a single aggregate endogenous state: the aggregate value of bank equity

Quantitative Application

The theoretical framework to investigate qualitatively and quantitatively why banks are not lending despite all the policy efforts

 Hypothesis 1 - Bank Equity Losses: Lack of lending responds to an optimal behavior by banks given the equity losses suffered in 2008.

 Hypothesis 2 - Capital Requirements: The anticipation of higher capital requirements is leading banks to hold more reserves and simultaneously lend less.

Quantitative Application

 Hypothesis 3 - Increased Precautionary Holdings of Reserves: Banks hold more reserves because they now face greater liquidity risk.

 Hypothesis 4 - Interest on Excess Reserves: Interest payments on excess reserves has led banks to substitute reserves for loans.

 Hypothesis 5 - Weak Demand: Banks face a weaker demand for loans. This hypothesis encompasses a direct shock to the demand for loans or a decline in the effective demand for loans that could follow from increases in credit risk.

Banks

$$\mathbb{E}_0 \sum_{t \ge 0} \beta^t U\left(DIV_t\right)$$

where $U(DIV) = \frac{DIV^{1-\gamma}}{1--\gamma}$ and DIV_t is the banker's consumption at date t

Loans

- Banks make loans during the lending stage
- ullet The flow of new loan issuances is I_t

$$B_{t+1} = \delta B_t + I_t.$$

• When banks grant a loan, they provide the borrower a demand deposit account that amounts to q_tI_t , where q_t is the price of the loan

Demand Deposits

- Deposits earn a real gross interest rate $R^D = (1 + r^d)$
- In the balancing stage, banks are subject to random deposit withdrawals $w_t D_t$, where $w_t \sim F_t(.)$ with support in $(-\infty, 1]$
- ASSUMPTION 1. Deposits remain within the banking system: $\int_{-\infty}^{1} w_t dF_t(w) = 0, \forall t$

Reserves

- p_t = price of reserves in term of deposits
- $p_t C_t \ge \rho D_t (1 w_t) / R^D$
- ullet Lending rate Fed : r_t^{DW} , Borrowing rate Fed : r_t^{ER}
- $r_t^{DW} \ge r_t^{ER}$

Interbank Market

- r^{FF} : net rate of fed funds
- M⁺ : mass of dollars in lending side
- M⁻ : mass of dollars in borrowing side
- The probability that a borrowing order finds a lending order : $\gamma^- = min(1, M^+/M^-)$
- The probability that a lending order finds a borrowing order : $\gamma^+ = min(1, M^-/M^+)$

Interbank Market

$$\frac{r^{FF} - r_t^{ER}}{(1 + r_t^{DW}) - (1 + r^{FF})} = \frac{(1 - \xi)}{\xi}.$$

Lending Stage

$$\frac{\tilde{D}}{R^D} = D + qI + DIV + \varphi p - B(1 - \delta).$$

Problem 2 In the lending stage, banks solve the following:

$$\begin{split} V^l(C,B,D;X) &= & \max_{I,DIV,\varphi} U\left(DIV\right) + \mathbb{E}\left[V^b(\tilde{C},\tilde{B},\tilde{D};\tilde{X})\right] \\ &\frac{\tilde{D}}{R^D} &= & D + qI + DIV + p\varphi - B(1-\delta) \\ &\tilde{C} &= & C + \varphi \\ &\tilde{B} &= & \delta B + I \\ &\frac{\tilde{D}}{R^D} &\leq & \kappa \left(q\tilde{B} + p\tilde{C} - \frac{\tilde{D}}{R^D}\right); \tilde{B}, \tilde{C}, \tilde{D} \geq 0. \end{split}$$

Balancing Stage

$$x = \rho \underbrace{\left(\frac{\tilde{D} - \omega \tilde{D}}{R^D}\right)}_{\text{End-of-Stage}} - \underbrace{\left(\tilde{C}p - \frac{\omega \tilde{D}}{R^D}\right)}_{\text{End-of-Stage}}.$$

$$\chi_l = \gamma^+ r^{FF} + \left(1 - \gamma^+\right) r_t^{ER}.$$

$$\chi_b = \gamma^- r^{FF} + \left(1 - \gamma^-\right) r_t^{DW}.$$

Balancing Stage

Problem 3 The value of the bank's problem during the balancing stage is as follows:

$$\begin{split} V^b(\tilde{C},\tilde{B},\tilde{D};\tilde{X}) &= \beta \mathbb{E} \left[V^l(C',B',D';X') | \tilde{X} \right] \\ D' &= \tilde{D}(1-\omega) + \chi(x) \\ B' &= \tilde{B} \\ x &= \rho \left(\frac{\tilde{D} - \omega \tilde{D}}{R^D} \right) - \left(\tilde{C} p - \frac{\omega \tilde{D}}{R^D} \right) \\ C' &= \tilde{C} - \frac{\omega \tilde{D}}{p}. \end{split}$$

Here χ represents the illiquidity cost, the return/cost of excess/deficit of reserves:

$$\chi(x) = \begin{cases} \chi_l x & \text{if } x \le 0 \\ \chi_b x & \text{if } x > 0 \end{cases}$$

Lending Stage

Problem 4 The bank's problem during the lending stage is as follows:

$$\begin{split} V^l(C,B,D,X) &= \max_{\{I,DN',\varphi\}} U\left(DIV\right) \dots \\ &+ \beta \mathbb{E}\left[V^l\left(\tilde{C} - \frac{\omega'\tilde{D}}{p},\tilde{B},\tilde{D}(1-\omega') + \chi\left(\frac{(\rho+\omega'\left(1-\rho\right))\tilde{D}}{R^D} - \tilde{C}p\right),X'|X\right)\right] \\ \frac{\tilde{D}}{R^D} &= D + qI + DIV_t + p\varphi - B(1-\delta) \\ \tilde{B} &= \delta B + I \\ \tilde{C} &= \varphi + C \\ \frac{\tilde{D}}{R^D} &\leq \kappa\left(\tilde{B}q + \tilde{C}p - \frac{\tilde{D}}{R^D}\right). \end{split}$$

Single State

•
$$E = pC + (\delta q + 1 - \delta)B - D$$

Proposition 1 (Single-State Representation)

$$\begin{split} V(E) &= \max_{\tilde{C}, \tilde{B}, \tilde{D}, DIV} U(DIV) + \beta \mathbb{E} \left[V(E') | X \right] \\ E &= q \tilde{B} + p \tilde{C} + DIV - \frac{\tilde{D}}{R^D} \\ E' &= (q'\delta + 1 - \delta) \, \tilde{B} + p' \tilde{C} - \tilde{D} - \chi \left(\frac{(\rho + \omega' \, (1 - \rho)) \tilde{D}}{R^D} - \tilde{C} p \right) \\ \frac{\tilde{D}}{R^D} &\leq \kappa \left(\tilde{B} q + \tilde{C} p - \frac{\tilde{D}}{R^D} \right). \end{split}$$

Loan Demand

$$q_t = \Theta_t \left(I_t^D \right)^{\epsilon}, \epsilon > 0, \Theta_t > 0,$$

The Fed's Balance Sheet and Its Operations

$$\begin{array}{ll} M_{t+1}^{0} & = & M0_{t} + \varphi_{t}^{Fed} \\ \frac{D_{t+1}^{Fed}}{R^{D}} & = & D_{t}^{Fed} + p_{t}\varphi_{t}^{Fed} + (1-\delta)\,B_{t}^{Fed} - q_{t}I_{t}^{Fed} + \chi_{t}^{Fed} - T_{t} \\ B_{t+1}^{Fed} & = & \delta B_{t}^{Fed} + I_{t}^{Fed}. \end{array}$$

$$\chi_t^{Fed} = \underbrace{r_t^{DW} \left(1 - \gamma^-\right) M^-}_{\text{Earnings from Discount Loans}} - \underbrace{r_t^{ER} \left(1 - \gamma^+\right) M^+}_{\text{Losses from Interest Payments on Excess Reserves}}.$$

$$p_t \left(M_{t+1}^0 - M 0_t \right) + (1 - \delta) B_t^{Fed} + \chi_t^{Fed} = D_{t+1}^{Fed} / R^D - D_t^{Fed} + q_t \left(B_{t+1}^{Fed} - \delta B_t^{Fed} \right) + T_t.$$