Assessing the Impact of a School Subsidy Program in Mexico: Using a Social Experiment to Validate a Dynamic Behavioral Model of Child Schooling and Fertility

Petra E. Todd & Kenneth I. Wolpin (2006)

Salman Farajnia

November 5, 2017

Todd and Wolpin (2006)

Impact of a School Subsidy Program

November 5, 2017 1 / 12

Motivation

• All eligible treatment group households were offered the same school attendance subsidy schedule.

		Monthly pa pese	Monthly payment in pesos		
School level	Grade	Females	Males		
Primary	3	70	70		
-	4	80	80		
	5	105	105		
	6	135	135		
Secondary	1	210	200		
	2	235	210		
	3	255	225		
			_		

TABLE 1—MONTHLY TRANSFERS FOR SCHOOL ATTENDANCE UNDER THE PROGRESA PROGRAM

Todd and Wolpin (2006)

Impact of a School Subsidy Program

November 5, 2017 2 / 12

Motivation

- All eligible treatment group households were offered the same school attendance subsidy schedule.
- It is not possible to determine the size and structure of the subsidy.

		Monthly payment ir pesos		
School level	Grade	Females	Males	
Primary	3	70	70	
	4	80	80	
	5	105	105	
	6	135	135	
Secondary	1	210	200	
	2	235	210	
	3	255	225	
			_	

TABLE 1—MONTHLY TRANSFERS FOR SCHOOL ATTENDANCE UNDER THE PROGRESA PROGRAM

Todd and Wolpin (2006)

Impact of a School Subsidy Program

November 5, 2017 2 / 12

Motivation

- All eligible treatment group households were offered the same school attendance subsidy schedule.
- It is not possible to determine the size and structure of the subsidy.
- It is not possible to assess the many alternative policy tools available to achieve the same goals.

		Monthly pa pese	ayment in os
School level	Grade	Females	Males
Primary	3	70	70
	4	80	80
	5	105	105
	6	135	135
Secondary	1	210	200
5	2	235	210
	3	255	225

TABLE 1—MONTHLY TRANSFERS FOR SCHOOL ATTENDANCE UNDER THE PROGRESA PROGRAM

Todd and Wolpin (2006)

Impact of a School Subsidy Program

November 5, 2017 2 / 12

Main Question and How to Answer It

• How to compare the efficacy of the PROGRESA program with that of alternative policies that were not implemented as part of the experiment?

・ 何 ト ・ ヨ ト ・ ヨ ト

Main Question and How to Answer It

- How to compare the efficacy of the PROGRESA program with that of alternative policies that were not implemented as part of the experiment?
- Structural estimation of a dynamic behavioral model of parental decision-making about childrens schooling and family fertility.

Main Question and How to Answer It

- How to compare the efficacy of the PROGRESA program with that of alternative policies that were not implemented as part of the experiment?
- Structural estimation of a dynamic behavioral model of parental decision-making about childrens schooling and family fertility.
- Out-of-sample validation first compares the actual post-program school attendance rates of the children in treated households to the rates predicted by the model based on simulating the introduction of the subsidy schedule.
- Explore the usefulness of social experiments as a tool for model validation.

< □ > < 同 > < 三 > < 三 >

Main Results

• The model performs well in estimating the treatment effect for girls, but less satisfactorily for boys.

3

A D N A B N A B N A B N

Main Results

- The model performs well in estimating the treatment effect for girls, but less satisfactorily for boys.
- subsidizing attendance at the lower grade levels, as under the existing program, is essentially an income transfer

< ロ > < 同 > < 回 > < 回 > < 回 > <

Main Results

- The model performs well in estimating the treatment effect for girls, but less satisfactorily for boys.
- subsidizing attendance at the lower grade levels, as under the existing program, is essentially an income transfer
- 3 to 5 and increases the amount of the subsidy to grades 6 to 9 by about 50 percent leaves the overall cost of the program unchanged and produces an increase in average completed schooling by about an additional 0.1 years

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Married couples are assumed to make sequential decisions over a finite horizon about the time allocation of all of their children age 6 through 15, including their school attendance and labor market participation, and about the timing and spacing of births.

< (17) > < (27 >)

- Married couples are assumed to make sequential decisions over a finite horizon about the time allocation of all of their children age 6 through 15, including their school attendance and labor market participation, and about the timing and spacing of births.
- Childrens wages are assumed to depend on distance to the nearest largest city, which provides an important source of identification.

• The value of having older girls at home may be greater if there are very young children in the household

3

A D N A B N A B N A B N

- The value of having older girls at home may be greater if there are very young children in the household
- The model also allows for a psychic cost of attending school that may be higher when a child is behind in school for his age. The existence of this psychic cost implies that forward-looking parents may forego having a child work when faced with a high child wage offer that is transitory.

< ロ > < 同 > < 回 > < 回 > < 回 > <

(1)
$$U(t) = U(C(t), p(t), n(t), s_b(t), s_g(t), S_b(t),$$

 $S_g(t), l_b(t), l_g(t), z_s; \varepsilon(t), \mu).$
(2) $C(t) = y_p(t) + \sum y_o(t, \tau_n)h(t, \tau_n).$
(3) $\log y_p(t) = y_p(a_p(t), z_c, \varepsilon_{y_p}(t); \mu_{y_p}),$
 $\log y_o(t, \tau_n) = y_o(t - \tau_n, I(b(\tau_n) = 1),$
 $z_c, \varepsilon_{y_o}(t); \mu_{y_o}).$

Todd and Wolpin (2006)

November 5, 2017 7 / 12

・ロト・西ト・モン・ビー シック

(4)
$$\pi_c(t, \tau_n) = \pi(t - \tau_n, S(t, \tau_n) | s(t, \tau_n)$$

= 1, μ_c).

TABLE 6—ONE-PERIOD TRANSITION RATES BY SEX: Age (a) 13 to 15

		Boys	
	Home (a)	Work (a)	School (a)
Home $(a - 1)$	44.4	40.7	14.8
Work $(a - 1)$	25.0	62.5	12.5
School $(a - 1)$	8.3	5.5	86.2

 $\mathbf{V}^{k}(\Omega(t), t) = \mathbf{U}^{k}(t, \Omega(t)) + \delta \mathbf{E}(\mathbf{V}(\Omega(t+1)),$

イロト 不得下 イヨト イヨト 二日

Results

		Actual			Predicted		
Age	School	Work	Home	School	Work	Home	χ^2
Boys							
6	0.933	_	0.066	0.923	_	0.077	0.58
7	0.981	_	0.019	0.980	_	0.020	0.02
8	0.987	_	0.013	0.980	_	0.020	0.99
9	0.994	_	0.006	0.979	_	0.021	3.49
10	0.982	_	0.018	0.974	_	0.026	0.86
11	0.977	_	0.023	0.964	_	0.036	1.45
12	0.885	0.021	0.094	0.846	0.039	0.115	3.99
13	0.780	0.084	0.136	0.736	0.078	0.186	4.51
14	0.677	0.157	0.166	0.619	0.191	0.190	3.41
15	0.490	0.276	0.235	0.520	0.251	0.229	0.88
Girls							
6	0.965	_	0.035	0.942	_	0.058	3.84
7	0.976	_	0.024	0.968	_	0.032	0.77
8	0.989	_	0.011	0.976		0.024	1.96
9	0.991	_	0.009	0.975	_	0.025	3.26
10	0.979	_	0.021	0.970	_	0.030	0.93
11	0.969	_	0.031	0.948	_	0.052	2.97
12	0.896	0.007	0.097	0.854	0.020	0.126	4.61
13	0.726	0.028	0.245	0.676	0.025	0.299	2.85
14	0.582	0.089	0.329	0.566	0.092	0.342	0.22
15	0.419	0.123	0.458	0.402	0.157	0.442	1.68

TABLE 9—ACTUAL AND PREDICTED CHOICE DISTRIBUTION BY CHILD AGE AND SEX (Pooled 1997 and 1998)

Note: χ^2 (0.05, 1) = 3.84, χ^2 (0.05, 2) = 5.99.

Todd and Wolpin (2006)

イロト イ部ト イヨト イヨト 二日

Results

	Boys			Girls			
Age	Actual	Predicted	χ^2	Actual	Predicted	χ^2	
Not behind	88.3	82.1	8.50	83.8	78.2	6.02	
Behind one year	79.8	76.4	1.56	75.4	74.5	0.09	
Behind two years	65.8	62.5	0.91	52.9	51.0	0.20	
Behind three years or more	49.1	51.7	0.62	44.7	42.7	0.39	

TABLE 10—ACTUAL AND PREDICTED SCHOOL ATTENDANCE RATES BY NUMBER OF YEARS LAGGING BEHIND IN SCHOOL: AGE 12–15

Note. χ^2 (0.05, 1) = 3.84.

э

イロト イヨト イヨト イヨト

Results

	Baseline ^a	Compulsory school attendance through age 15	Original subsidy	2× subsidy	0.5× subsidy	Restricted subsidy ^b	1.43× restricted subsidy
Mean completed schooling							
Girls	6.29	8.37	6.83	7.30	6.56	6.67	6.97
Boys	6.42	8.29	6.96	7.44	6.68	6.79	7.07
Percent completed grade 6 or more							
Girls	75.8	95.1	82.3	86.9	79.3	77.4	82.0
Boys	78.8	93.7	83.3	86.7	81.1	79.6	82.8
Percent completed grade 9 or more							
Girls	19.8	55.5	25.9	31.6	23.1	26.2	29.3
Boys	22.8	54.7	28.0	34.6	25.5	29.2	31.8
Cost per family	0	_	26,096	59,935	11.989	15,755	25,193
Mean number of children	4.24	4.21	4.28	4.32	4.27	4.25	4.27
	Bonus for completing 9th grade ^c	Junior secondary school in each village	Uncondition transfer pesos	al income 5,000	No child throug age 1	labor Orig gh and 5	ginal subsidy 1 25% wage increase
Mean completed schooling	U	C C			U		
Girls	6.50	6.39	6.4	1	6.30)	6.75
Boys	6.58	6.55	6.53		6.52	2	6.79
Percent completed grade 6 or more							
Girls	74.9	76.0	77.6	5	76.1		81.5
Boys	76.9	79.0	80.0)	79.9		81.8
Percent completed grade 9 or more							
Girls	28.8	21.2	20.8	3	19.7		25.2
Boys	32.7	24.1	23.7	7	23.5		26.5
Cost per family	36,976	_	237,0	000	_		25,250
Moon number of shildren	4.20	4.24	4.5	14	1.25		4.20

^a Predicted: control and treatment families.

Todd and Wolpin (2006)

Impact of a School Subsidy Program

November 5, 2017 11

11 / 12

Author

Videos of Structural Models:

https://hceconomics.uchicago.edu/news/3-questions-petra-todd

Impact of a School Subsidy Program

November 5, 2017 12 / 12

э